
FAST TWO-STAGE VOCABULARY-INDEPENDENT SEARCH IN SPONTANEOUS SPEECH

Peng Yu and Frank Seide

Microsoft Research Asia, 5F Beijing Sigma Center, No. 49 Zhichun Rd., 100080 Beijing, P.R.C.
�t-rogery,fseide�@microsoft.com

ABSTRACT

For efficient organization of speech recordings - meetings, in-
terviews, voice mails, lectures - the ability to search for spoken key-
words is an essential capability. In [1, 2], we presented our work
on vocabulary-independent search in spontaneous speech. That
method involved linear scanning of phonetic lattices, and thus did
not scale up to large collections. In this paper, we present a two-
stage approach to fast search: first we retrieve segments from an
index-like structure that are promising to contain the keyword, then
we locate individual keyword occurrences by a detailed linear lat-
tice scan. However, designing an efficient vocabulary-indepedent
indexing structure is non-trivial. We use a “soft” index similar
to [3] that provides expected term frequencies (���s) of query
terms. We propose to approximate ���s by � -gram phoneme
language models estimated on the lattices (one per segment). Our
index stores these language models in an inverted structure. Word
spotting experiments on voicemails show that with this two-stage
method, we lose under 4% FOM (Figure Of Merit) relative at a
25-times speed-up compared with a full linear search.

1. INTRODUCTION

Audio search – finding spoken words in speech recordings – is an
important topic. Many approaches have been reported in literature
[4, 5, 6, 1, 2]. In [1], we presented a phonetic approach to vo-
cabulary-independent audio search. We search lattices instead of
top-1 recognizer output to improve recall and use phoneme lattices
instead of word lattices to handle unlimited vocabulary. In [2], we
extended this work by a hybrid word-level/phonetic combination.

However, direct lattice search involves linear scanning of lat-
tices, and thus does not scale up to large collections. For a more
efficient search, some form of index is needed.

In [5], it is proposed to index individual arcs of lattice (lattice
inversion). [6] proposes to store phone � -grams at all time loca-
tions as index. Both index individual keyword locations, and suffer
from a large index size. When searching multi-label expressions
such as phonetic strings, [5] needs to consider sequencing, so that
only a speed-up for the first label in the query string is achieved,
while for every following label, a search operation equivalent to a
direct linear search is needed.

Instead, we decided to index segments that contain keywords
with low time resolution of about 15 seconds, and propose a two-
stage fast search approach – first quickly locate promising segments
by index, then use linear search in the selected segments only. How-
ever, in our context, the concept of “indexing” is non-trivial. What
units should be indexed in a vocabulary-independent index? What
statistics should be stored to represent recognition alternates?

[3] addresses these questions by (1) indexing expected term fre-
quencies (���, also known as “expected counts”) (2) limiting the
index to fixed-length sub-strings, and (3) approximating the ���s

of a query by the minimum of all of its sub-strings. The authors ex-
plore this approach for known-vocabulary queries, but rightly point
out the fitfullness for handling unlimited vocabulary. In our view,
the major shortcoming of this method is that the worst-matching
sub-string dominates the estimate, and no sequence relationship
amongst the individual sub-strings is exploited.

To overcome this, we propose to approximate ���s of a query’s
phoneme sequence in a different way: by � -gram phoneme lan-
guage models estimated on lattices (one per segment). Our “index”
is the collection of these language models, stored in an inverted
structure.

The main contributions of this paper are: first we propose a
two-stage fast search algorithm for vocabulary-independent search.
Secondly, we propose a novel method to estimate ���s from sub-
string statistics, which is the key part of the two-stage search.

The paper is organized as follows. In section 2 we will re-
capitulate lattice-based audio search. Section 3 will introduce the
two-stage search framework, including the key part of this paper,
the vocabulary-independent index. Section 4 reports experimental
results, and section 5 will conclude the paper.

2. LATTICE-BASED WORD SPOTTING

We briefly recapitulate our phonetic approach to vocabulary-inde-
pendent search in spontaneous speech [1]. In phonetic search, “in-
dexing” consists of using speech recognition to generate a phonetic
representation of each audio file – a “lattice” of scored phoneme hy-
potheses – and representing them in a structure efficient for search-
ing. “Search” means rapidly locating all sub-paths in the lattice
set that match the query string’s phonetic representation, and it is
“found” where a match’s “confidence” is above a certain threshold.

We define the “confidence” of a match as its “word posterior
probability”1� ��� ��� �� ��� ���

��, i.e. the sum of the probabilities
of all paths that contain the query string � from �� to �� in audio
segment �:

� ��� ��� �� ��� ���
�� �

�

��� �������������������

����			��������

� ��� ���� (1)

where �� represents the �-th audio segment in the audio collection,
� � �	��

� 	� � a hypothesized phonetic transcription, � �
����

� ����� the associated time boundaries, and � ��� ���� the
posterior probability of the hypothesized � and � . Eq. (1) can be
efficiently approximated by forward-backward scoring of lattices.

1“Word posterior probability” is the common term to refer to the expres-
sion � ��� ��� �� ��� ����. It is, in fact, not a probability: Summing it up
over all combinations of ������ ��� does not give 1 but the total expected
term count.

I - 4810-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

index

extraction

soft index

1
st
 stage:

segment level location

2
nd

 stage:

in-segment search
QUERY

o
ff
lin

e
o
n

lin
e

results

active lattices

(selected segments)

segments

containing

query

lattices

(one per segment)

Fig. 1. Flow chart of the two-stage search.

The same formalism can also be applied in a LVCSR context to
word lattices directly, if unknown-vocabulary queries are no issue,
and both can be combined into a word/phonetic hybrid which can
lead to substantial accuracy improvement [2].

3. TWO-STAGE FAST SEARCH

We propose here a two-stage fast-search: given a query keyword,
first find promising segments that likely contain the keyword, then
apply detailed linear search in these segments. Fig. 1 shows the
flow chart of the search process. The idea is to realize the first stage
by some pre-stored index such that the time cost is small compared
to the second stage. The second stage is realized by symmetric
dynamic programming as described in detail in [1]. The remainder
of this section will only discuss the first stage.

3.1. Indexing Expected Term Frequencies

In [3], audio clips are ranked by expected term frequency (���)
for the purpose of retrieval. We propose to apply the same ranking
for the purpose of two-stage search. For a given query �, the ���
for each segment �� can be computed as follows:

������� � ��� ������� ����

�
�

���

��� ���� ��� ���� (2)

�
�

������

� ��� ��� �� ��� ���
��

with ��� ��� being the term frequency of query term � in � .
If the query vocabulary is known at the time of indexing, we

can directly calculate and store the ���s of all keywords for all
segments. However, this is impossible for an open query vocabu-
lary. Instead, we approximate ���s from statistics of a limited set
of sub-strings (the index keys) derived from each audio segment.
Our “index” stores these sub-string statistics. The remainder of this
section will detail this method.

In the following, query terms shall be represented as phoneme
sequences2 � � ���� 			� ���. If pronunciation variants exist, the
expected term frequencies of all pronunciations need to be summed
up, possibly weighted with a pronunciaton prior.

2The problem converting from graphemic to phonetic form is not the
subject of this paper.

3.2. Upper-bound Approximation

Before introducing our new method, we want to review an approach
proposed by Allauzen et al. [3] that we want to compare ours with
in the results section. We call it upper-bound approximation.

Allauzen proposes to exploit that the��� of a string is bounded
by all ���s of its sub-strings. The minimum ��� of a set of
sub-strings of the query � is an upper-bound of the ��� of �.
If the sub-strings set is representative enough, the upper-bound is
approaching the ��� of � (if � itself belongs to the sub-string
set, the upper bound exactly equals ��� of �). [3] approximates
���s as:

������� � ���
�	�	�
�	��

�����
�

with
 � � meaning that
 is a sub-string of �, and � being
the index-key set. The index is designed to store the ���s of all
sub-strings
 � �.

In [3], the method is used for in-vocabulary keywords. Never-
theless, the method is directly applicable for unlimited vocabulary.

3.3. � -gram Approximation

The problem we see with the upper-bound approximation is that
only the minimum ��� of sub-strings is used for the approxima-
tion. No sequential information is utilized. We propose to make use
of this and borrow some idea from � -gram language modeling.

We define � ������ as the probability of observing query string
� at any word boundary in the recording ��. Then the ��� is

������� � 	�� � � ����
�� (3)

with 	�� being the expected number of words in document
.
Now we make the assumption that � ������ can be approxi-

mated by an � -gram model:

� ������ � 	� ������ �

��

���

	� ����������� � � � � ����� �
�� (4)

We estimate the � -gram probabilities for each segment’s lattice
such that the model best matches (in the Maximum-Likelihood sense)
the phoneme-string posterior distribution defined by the lattice. The
resulting estimator has the following form and solution:

��� ����
�� 	������� �	��
�
� �
�

	�������� �������� � � � � ����� �
���

������������ � � � � ���

������������ � � � � �����

where “MELL” stands for “Maximum Expected Log-Likelihood.”
This estimator has two important properties: If the lattice degener-
ates to a single path, MELL reduces to ML; and for �
 length of
�, � ������ � 	���������

��.

3.4. Selection Of Index-Key Set

For larger � , the vast majority of phoneme � -grams occur very
rarely or are even phonotactically impossible. To strike a balance
between accuracy and index size, we want to use a variable-length
index-key set that includes only probable long index keys, while
keeping a complete set of short index keys to ensure coverage. We
choose the index-key set by extracting from a large background
dictionary all phoneme sub-strings up to a maximum length.

For sub-strings not contained in the background dictionary, we
introduce a back-off/fallback strategy. Again, we borrow a tech-
nique from traditional � -gram language modeling. When a long

I - 482

➡ ➡

Table 1. Test-set token perplexities and top-1 error rates.

setup word LM phonetic LM

token perplexity 442 43
token error rate 52.7% 44.2%

history is available in the index-key set, it will be used directly,
otherwise, we fall back to a shorter history:

�� ��� �������� ���� ����� �
�� �����������

���������

��������� �������� ���� ����� �
��

if �������� ���� ��� � �

��������� ���� ������
�� � �� ��� �������� ���� ����� �

��
if �������� ���� ��� �� �
but �������� ���� ����� � �

�� ��� �������� ���� ����� �
��

otherwise

(5)

Here � is the backoff weight, calculated such that for each history
�,
�
���

�� ��� ��� �
�� � �.

4. RESULTS
4.1. Setup

We evaluate our system on the LDC Voicemail corpus [7], which
consists of two parts, VM-I and VM-II. All test data in VM-I and
the entire VM-II (training and test portions), totally about 15h, are
used as our test set (we do not use the VM-II designated training
portions anywhere for training purposes). Of this test set, 1.5h are
set aside as a dev set for algorithm development and parameter tun-
ing. All results below are for the remaining evaluation set, about
13.5h. This set has been split into 3224 segments with average du-
ration of about 15s. The acoustic model was trained on 309h of the
Switchboard corpus.

The keyword set was selected by an automatic procedure as
in [1]. The resulting keyword set has 6058 entries, 2295 (37.9%)
of which are OOV3 w.r.t. our word-based baseline. 3050 (50.3%)
of these keywords are single words, the other 3008 (49.7%) are
compound words. Example keywords are adapter, semiconductor,
and multiple-database-search.

To be domain independent, no language model has been trained
on any voicemail data. The phonetic language model is trained on
transcriptions of 309 hours of Switchboard, of 50 hours of LDC
Broadcast News 96 training, and from about 87000 background
dictionary entries, a total of 11.8 million phoneme tokens. In ad-
dition, we have also built a word-level system for our hybrid ex-
periments. The word language model is trained on Switchboard
transcriptions, with a dictionary of 27463 words. Table 1 shows the
test-set token (word or phoneme) perplexities and top-1 error rates.

We measure search accuracy by the common “Figure Of Merit”
(FOM) defined by NIST (National Institute of Standards & Tech-
nology) as the average of detection/false-alarm curve over the range
[0..10] false alarms per hour per keyword.

4.2. Upper-bound And� -gram Approximation

Fig. 2 compares these two basic sub-string approximations. We
only use the single-word query set (3050 words) because we want
to keep effects from cross-word indexing separate.

The horizontal axis represents the percentage of active seg-
ments - segments selected for linear search, while the vertical axis

3A word sequence is out of vocabulary if at least one of its words is.

20%

25%

30%

35%

40%

45%

50%

55%

60%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%ACTIVE%

FOM%

full linear search
complete index (no approximation)
M-gram approximation
upper-bound approximation

Fig. 2. Comparison of upper-bound and � -gram approximation
(“full 4-gram” index-key set, single-word queries only).

shows the FOM. The line “full linear search” means detailed linear
search on all segments. The line “complete index” represents an
oracle experiment where the index-key set includes the full-length
pronunciations of all keywords, thus ���s of all keywords are di-
rectly available (no need to approximate from sub-strings). This
setup reaches full accuracy with only 4% active segments (25 times
speed-up), which confirms our choice of ranking by ���. It also
gives the theoretical upper-limit of any sub-string approximation
methods.

The other two lines show the two-stage search results with
upper-bound and our � -gram approximation respectively. The
index-key set includes all sub-strings with the same length limi-
tation of 4 (“full 4-gram” set) used in [3]. Compared to the upper-
bound approximation,� -gram approximation halves the gap to the
theoretical upper-limit (“complete index”).

4.3. Index-Key Set Selection

Fig. 3 compares different index-key sets and evaluates our method
of extracting index-keys from background dictionary.

When the length of index key (�) grows from 4 to 5 and 6,
the “full � -gram” line is approaching the theoretical upper-limit
(“complete index”). With 4% active segments, the “full 6-gram” is
only 0.8 points below the “full linear search”. However, the index
set is untolerably large – about 2 billion entries per hour of speech.

Next we replaced the key set by one extracted from a back-
ground dictionary (“background � -gram”) with 98877 words. In

20%

25%

30%

35%

40%

45%

50%

55%

60%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%ACTIVE%

FOM%

full linear search

complete index

full 6-gram (1,992,912 ME/h)

full 5-gram (44,280 ME/h)

full 4-gram (984 ME/h)

background 6-gram (54 ME/h)

background 5-gram (39 ME/h)

background 4-gram (18 ME/h)

Fig. 3. Comparison of different index-key sets. Index sizes are
shown in million entries per hour (ME/h). Single-word queries
only.

I - 483

➡ ➡

45%

50%

55%

60%

65%

70%

75%

80%

85%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%ACTIVE%

FOM%

full linear search

complete index

full 5-gram (49,200 ME/h)

dictionary 5-gram (39 ME/h)

Fig. 4. Results for compound-word queries.

our 3050 keywords set, 670 (22%) are not in the background dic-
tionary. The backoff/fall-back strategy in Eq. 5 is used here. From
“full 6-gram” to “background 6-gram”, we lose another 2-points
FOM with 4% active segments, while the index size is dramatically
reduced from 2 billion to 54 million entries per hour of speech.

4.4. Compound Words (Multi-Label Queries)

Fig. 4 shows our experiments with compound-word queries (3008
words). In linear lattice search, we found when matching com-
pound words, allowing an optional silence (sil) at word bound-
aries yielded 5% FOM improvement. This can directly be applied
to ��� estimation for compound-word queries by summing up
��� for all pronunciations with and without sil. The “full 5-
gram” set now includes also 5-grams with sil (e.g. n-uw-sil-
y-ao). The figure shows that with 4% active segments, the “full
5-gram” is 2-points below “complete index”.

The “background 5-gram” setup uses the same 5-grams from
background dictionary. Cross-word combinations should ideally
be included but is infeasible due to their sheer number. We include
a single unigram for sil in the index-key set. At 4% active seg-
ments, we get another 2-points FOM drop. The drop is larger than
in the case of single-word queries (about 1.5 points). The reason
is of course that our background index does not include the cross-
word phoneme combinations.

40%

45%

50%

55%

60%

65%

70%

75%

80%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%ACTIVE%

FOM%

hybrid full linear search

hybrid two-stage search

phonetic full linear search

phonetic two-stage search

Fig. 5. Results for entire query set (single and compound word
queries, “background 5-gram”), and comparison with hybrid word-
level/phonetic two-stage search.

4.5. Entire Query Set and Hybrid Indexing/Search

Fig. 5 shows the result on the entire query set (both single-word
and compound-word queries, 6058 words), using the “dictionary 5-
gram” setup. With 4% active segments, two-stage search is about
3-points below the full linear search (to distinguish from the follow-
ing hybrid results, the two setups are labeled “phonetic two-stage
search” and “phonetic full linear search”).

Fig. 5 also shows results for the hybrid word/phonetic search
briefly introduced in section 2. Our indexing/two-stage search
scheme can easily be applied. The line “hybrid full linear search”
shows results for the hybrid system using full linear search. The
pure word-based system by itself has very poor accuracy (44%, not
shown in the Fig.), caused by both language model mismatch and
out-of-vocabulary queries. But taken together, we still achieve a
6.5-points improvement over the pure phonetic system.

The line tagged “hybrid two-stage search” represents the hy-
brid two-stage search result. The index used in the first stage com-
bines the phonetic “background 5-gram” setup and a word-level in-
dex with fixed vocabulary (realized with the method in section 3).
Compared with “phonetic two-stage search,” a consistent 6-7 point
improvement is achieved over the entire curve.

5. CONCLUSION

We have presented a vocabulary-independent two-stage fast search
method. In the first stage, an ��� based “soft” index is used to
select segments that are likely to contain query keywords (active
segments), while in the second stage, linear search is applied only
to these active segments.

To be vocabulary-independent, we proposed a sub-string based
� -gram approximation for estimating ��� for any query key-
words. We have also looked into the problem of index key selec-
tion (balance between index size and accuracy); compound words
queries (cross-word phoneme combinations, pause between words);
and extension of the indexing/two-stage framework to hybrid word-
level/phonetic search.

Experiments show with this two-stage method, we lose only
about 4% FOM relative at 25 times speed up.

6. ACKNOWLEDGEMENTS

The authors wish to thank Dr. Asela Gunawardana for sharing his
acoustic models for Switchboard, and Dr. Ciprian Chelba for fre-
quent and fruitful discussions.

7. REFERENCES

[1] F. Seide, P. Yu, et al., Vocabulary-Independent Search in Spontaneous
Speech. Proc. ICASSP’04, Montreal, 2004.

[2] P. Yu, F. Seide, A Hybrid Word / Phoneme-Based Approach for
Improved Vocabulary-Independent Search in Spontaneous Speech.
Proc. ICLSP’04, Korean, 2004

[3] C. Allauzen, M. Mohri, M. Saraclar, General Indexation of Weighted
Automata - Application to Spoken Utterance Retrieval. Proc. HLT’04

[4] J. Garofolo, TREC-9 Spoken Document Retrieval Track. National
Institute of Standards and Technology, http://trec.nist.
gov/pubs/trec9/sdrt9_slides/sld001.htm

[5] M. Saraclar, R. Sproat, Lattice-based search for spoken utterance re-
trieval. Proc. HLTNAACL 2004

[6] S. Dharanipragada, S. Roukos, A multistage algorithm for spotting
new words in speech. IEEE Transactions on Speech and Audio Pro-
cessing, vol. 10, issue 8, pp. 542-550, 2002.

[7] M. Padmanabhan et al, Voicemail Corpus Part I (LDC98S77) and
Part II (LDC2002S35). Linguistic Data Consortium, http://www
.ldc.upenn.edu

I - 484

➡ ➠

