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Abstract

In this article a complete audio-visual speech
recognition system suitable for embedded devices is

presented. As visual feature extraction algorithms

Active Shape Models (ASM) and Discrete Cosine
transformation (DCT) have been investigated and

discussed for an embedded implementation. The

audio-visual information integration has also been
designed by taking into account device limitations.

It is well known that the use of visual cues improves

the recognition results especially in scenarios with 
high level of acoustical noise. We wanted to compare

the performance of Lip Reading and the conventional
Noise Reduction systems in these degraded scenarios,

as well as the combination of both kinds of solutions.

Important improvements are obtained especially for
non-stationary background noises like voice

interference, car accelerations or indicators clicks. 

For this kind of noises Lip Reading outperforms the
results obtained with conventional Noise Reduction

technologies.

1. Introduction

In recent years Automatic Speech Recognition (ASR)

has been deployed widely in mobile phones and car

environments due to convenience and safety reasons.

However, especially in these scenarios often severe

noise appear and has a very bad impact on the

recognition rate. Several techniques like Noise

Reduction based on acoustic signal processing [1]

have been developed to improve the robustness of

ASR when the acoustic signal is corrupted. 

With the emerging distribution of cameras in

embedded devices like mobile phones a new input

modality is available: the visual information. Lip

reading is a well known technique that exploits the

additional information contained in the lips

movement during speech [2] in order to improve the 

recognition rate and provide a more noise robust

speech recognition system. Compared to conventional

acoustic recognition, audio-visual speech recognition

systems can decrease the Word Error Rate for various

signal/noise conditions as it was achieve by Intel and

IBM [3] [4]. These proposed solutions work on PC

platforms, but are not specially designed to work on

resource limited embedded devices. The challenge of

this paper is to show that lip reading techniques can

improve the recognition rate not only on PC but also

with algorithms designed to work on embedded

environments. Further improvements can be obtained

in combination with conventional Noise Reduction

systems.

This paper is organized as follows; in section 2 our

Lip Reading System for embedded devices is

presented. In section 3 the recognition results are

summarized. Finally conclusions will be given in 

section 4. 

2.  Lip Reading System

Our Lip Reading System is made up of the following

function blocks: the audio pre-processing on the

acoustic channel, a lip localization system followed

by a visual feature extraction on the visual channel

and finally the integration of audio and visual

information together with the recognition process.

In our implementation the audio pre-processing is

going to be the same as used in conventional speech

recognition systems for embedded devices [5]. In the

following paragraphs the different blocks are going to

be explained.

2.1 Lip Finding and Tracking

The first task to be solved in a lip reading system

consists in the automatic detection and tracking of the

mouth region. Our algorithm [6] is made up of two

different functions: lip finding, and lip tracking. Lip

Finding is applied when no previous information of

the lip position is available. This happens in the first

frame of a sequence or whenever the lips have not

been correctly located in the previous frame. Lip 

Finding is based on a geometric model of the face.

Structures of pixels are evaluated in order to know if

their relative positions match a simplified prior model

of the face, see figure 1.a. In particular, this model
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where ,|...|| t21  and b is a t-dimensional

vector given by:

accounts only for the relationships between location

of the eyebrow(s) and the mouth.

)xx(b T
 (2)

The b coefficients will describe the different

variations of the mouth with respect to its mean value.

A detailed description of the ASM with optimal

features can be found in [7].

In our implementation the rigid transformation

parameters, scaling, orientation and translation,

obtained from the lip localization algorithm are used

to simplify the matching of the landmarks. In this

solution a horizontal filter with different polarity is 

used to track down the upper and the lower lip, which

will define two regions. On the boundaries of these

regions a first approximation of the lip contours is

placed, afterwards PCA will be applied. For each

subsequent image the new contours will be located

using as initialization for the matching the contours

points of the previous frame.

Fig. 1.a: lip finding Fig. 1.b: lip tracking

Lip tracking proceeds when knowledge of the lips

position is available in the previous frame. In this

case we rely on the hypothesis that the position of the 

lips will not be very different between one frame and

the next one. Lips will be searched in an area that is 

10% larger than the region where the lips were

located in the previous frame, see figure 1.b.

Furthermore, lip tracking is more reliable and requires

less resource than lip finding.

Our embeddable lip finding and tracking algorithm

[6] is able to work without special light conditions as 

well as without any kind of reflected markers or 

special make up placed on speaker’s lips.

2.2.2 Appearance Based Feature Extraction

Appearance based methods provide visual features by

using a grey scale intensity lip image transformation.

These features contain information about the lip 

structure but also about the teeth and tongue

visibility. In our system a cascade of operations [3] is 

performed before making the DCT. The coordinates

of lip corners obtained by our lip finding and tracking

algorithm [6] are used to determine the rotation,

scaling and translation of the mouth. A new grey

scale intensity lip image is obtained in such a way

that the new normalized mouth is generated. Over this

image a bi-dimensional elliptical and Gaussian mask

is applied. Finally the image is filtered by a Gaussian

filter in order to reject high frequency noises (see 

fig. 2). 

2.2 Visual Feature Extraction

Once the mouth region is found an appropriate set of

lip features must be extracted. The different feature 

extractions approaches that can be found in the

literature have been classified according to the type of 

information source they process [4], Shape Based and 

Appearance Based. For this work one technique of

each group was chosen; Active Shape Models (ASM)

as Shape Based approach and Discrete Cosine

Transformation (DCT) as Appearance Based one.

2.2.1 Shape Based Feature Extraction

In ASM a priori knowledge of the plausible mouth

deformations is learnt in a training process. A set of

points (landmarks) must be consistently located in the

mouth contours of the training set. Rigid

transformation dependencies are first removed by

using Procustes Analysis. Then Principal Component

Analysis (PCA) is applied on the aligned points. PCA

computes the main variation modes of the points.

This allows the deformations to be described only by

a small set of parameters.

Fig. 2.a Fig. 2.b

Fig. 2: Mouth region before (2.a) and after (2.b)

normalization and masking. 

First and second DCT coefficients derivatives have

been also used as features. The number of coefficients

is quite large; a feature dimension reduction is

achieved by a Linear Discriminate Analysis (LDA).

This operation is quite simple since it comes down to

a simple matrix multiplication. Moreover, LDA is an 

already implemented algorithm in conventional

speaker independent speech recognition systems for 

embedded devices.

The eigenvectors i  and the associated eigenvalues

i  of the landmark coordinates covariance matrix S

are computed and sorted so that 1ii . If i

contains the t eigenvectors corresponding to the

largest eigenvalues, a set of points describing the

mouth contour x can be approximated by:

bxx  (1)
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2.3 Audio-Visual Integration First of all DCT and ASM feature extraction will be

compared. As it can be seen in table 2 the Word Error

Rate using the DCT is 11.8% lower as using the

ASM. For the ASM the detailed lip contours must be

found, while for the DCT implementation only an

approximation of the mouth region is required, which

is much easier and works better in our embedded

implementation. Due to the resource limitations, our

ASM implementation performs only one iteration,

which results in a sensitiveness to shadows and light

conditions. ASM is often not able to find the lip

contours properly, which explains the better results

obtained by DCT. The results obtained with our DCT

implementation improved the results obtained in [11]

where WER of 63.2% was achieved also with DCT

but with a lower resolution and without LDA. In our 

implementation a 64x32 pixel mouth region is

analysed.

Audio-visual integration solutions can be classified in

three different groups: early integration, late 

integration and finally hybrid integration [4]. In all of

these approaches the Hidden Markov Models (HMM)

can be used to perform the recognition.

In hybrid integration the state emission probabilities

from the HMM theory [8] are evaluated

independently for the visual and the acoustic channel.

However, the Viterbi decoding is performed only

once. The integration is made on the emission

probabilities level. This kind of feature combination

is known as multistream [9].

Acoustic

Preproc.

Visual

Preproc.

Search

Emission

Probab.

 Calculat.

Emission

Probab.

 Calculat.

Emission

Probab.

Integration

ASM DCT

Word Error Rate 64.8 % 53.0%

Fig. 3: Hybrid integration general diagram 

Table 2: Visual Feature Extraction Comparison for 

Continuous Speaker Independent digit recognition using 

only visual information.

Hybrid integration seems to be the most suitable

solution for our implementation. On the one hand, the

fact that two different emission probabilities are 

evaluated introduces a certain independency between

the acoustic and visual channel. Furthermore, our

hybrid integration delivers a more robust system

compared to early integration. Both information

sources can be weighted according to their respective

reliability, e.g. signal to noise ratio for the acoustic

channel is obtained and according to this one a fixed

weighting is used, see table 1. On the other hand,

performing only once the searching process (Viterbi

decoding) saves a lot of resources, in comparison

with the parallel search of late integration. This

allows the audio-visual speech recognition system to

be implemented in embedded devices without a 

substantial increase in CPU demands.

In figure 4 the WER for different kind of background

noises is shown. First of all a stationary noise is going

to be examined. A car noise with constant speed from

the Noisex database has been selected. As a second

category of noise a mixture of stationary and non-

stationary noises has been taken; a noise recorded in a

car driving realistic situation. The motor noise is not

any longer completely stationary due to accelerations

and there appear other artefacts like indicator clicks. 

Finally, for non-stationary background noise a single

speaker interference from the Macrophone database

has been used. For these three kinds of noises we

compare the results in figure 4 by using the two most

common Noise Reduction solutions, Spectral

Subtraction and Wiener Filter [1], and the use of our

Lip Reading system for very degraded noise

environments. As we can see, for a stationary noise,

the conventional Spectral Subtraction is able to

reduce the WER until 8%, outperforming Lip

Reading. But when the noise is not stationary at all, as 

for example interfering voice, the use of Spectral

Subtraction or Wiener Filter provides bad results with

many insertions. Here, Lip Reading improves the

WER significantly, as visual cues are independent on 

the acoustical noise. Even for the non stationary car

noise Lip Reading outperforms the other two

solutions.

SNR < 0 

(dB)

0 < SNR < 5 

(dB)

5 < SNR < 16 

(dB)

16 < SNR 

(dB)

Weights V = 50%

A = 50%

V = 20%

A = 80%

V = 10%

A = 90%

V = 0%

A = 100%

Table 1: Optimal Audio and Video weightings according to

different SNR of the acoustic channel.

3. Results

All experiments shown in this article have been

performed by using the CUAVE database [11]. This

audio-visual database is composed by 36 American

English speakers. 20 persons were used for training

and other 16 for testing in order to obtain the speaker

independent system. The experiments were always

continuous digits “zero”-“nine” 4 times for every

speaker making a total of 640 test numbers.

Finally we have combined our visual cues with the

acoustical signal improved by the conventional Noise

Reduction techniques. For this experiment we have

chosen the non-stationary car noise.
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