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ABSTRACT

In the field of audio-visual speech recognition, multi-stream
HMMs are widely used, thus how to automatically and prop-
erly determine stream weight factors using a small data set
becomes an important research issue. This paper proposes
a new stream-weight optimization method based on an out-
put likelihood normalization criterion. In this method, the
stream weights are adjusted to equalize the mean values
of log likelihood for all HMMs. based on likelihood-ratio
maximization which achieved significant improvement by
using a large optimization data set. The new method is
evaluated using Japanese connected digit speech recorded
in real-world environments. Using 10 seconds speech data
for stream-weight optimization, a 10% absolute accuracy
improvement is achieved compared to the result before op-
timization. By additionally applying the MLLR (maximum
likelihood linear regression) adaptation, a 23% improve-
ment is obtained over the audio-only scheme.

1. INTRODUCTION

Automatic speech recognition (ASR) systems are expected
to play important roles in user-friendly human-machine in-
terfaces in the near future, such as under ubiquitous com-
puting environments. Although high recognition accuracy
can be obtained for clean speech, the accuracy dramatically
decreases in noisy conditions such as driving environments.
Thus, increasing robustness is one of the most important
challenges for current ASR. Multi-modal ASR which jointly
uses acoustic and visual features has recently become very
attractive for this purpose [2, 3, 4]. In most multi-modal
ASR methods, multi-stream HMMs are used in order to
effectively combine acoustic and visual information. The
multi-stream HMM includes audio and visual streams, and
weighting parameters called stream weight factors. Although
these stream weights need to be properly estimated accord-
ing to noise conditions, theoretically they cannot be deter-
mined by the maximum likelihood (ML) criterion. There-
fore, we investigated a stream-weight optimization method

based on likelihood-ratio maximization [7]. Significant im-
provements for recognition accuracy were achieved for real-
world data by applying this method; however, a large amount
of speech data was needed to robustly determine the stream
weights.

In order to optimize these stream weights using a small
data set for online audio-visual ASR, this paper proposes a
new stream-weight optimization method based on an output
likelihood normalization criterion. In this method, stream
weights are computed so that output log likelihoods ob-
tained from all multi-stream HMMs are equalized. We com-
pare performance of the proposed optimization scheme with
that of the previous optimization method through recogni-
tion experiments using real-world audio-visual data.

In Section 2, we explain the details of multi-stream
HMMs as well as stream-weight optimization methods. The
experimental setups and results are described in Section 3.
Finally, Section 4 concludes this paper.

2. STREAM-WEIGHT OPTIMIZATION

2.1. Multi-stream HMMs

In our audio-visual speech recognition scheme, we use multi-
stream HMMs consisting of audio and visual streams. Multi-
stream HMMs have the advantage that they can effectively
combine audio and visual information. In an audio-visual
multi-stream HMM, the log likelihood bw(Ot) of an audio-
visual feature Ot for a word w ∈ W is represented by the
following expression (1):

bw(Ot) = λAwbAw(OAt) + λV wbV w(OV t) (1)

where t is time, W is a word set of recognition dictionary
(|W | = N ), and bAw(OAt) and bV w(OV t) are likelihoods
for an audio feature OAt and a visual feature OV t, respec-
tively. λAw and λV w are audio and visual stream weight
factors, respectively, that are constrained by the following
restriction (2):

λAw + λV w = 1 , 0 ≤ λAw, λV w ≤ 1 (2)
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2.2. Optimization method based on a likelihood-ratio
maximization

Stream weights cannot be determined by the ML criterion,
in contrast with other model parameters such as mean or
variance values of Gaussian components. When recogniz-
ing speech data, these stream weights need to be estimated
properly according to noise conditions in order to achieve
high recognition accuracy.

We investigated an automatic stream-weight optimiza-
tion method based on a likelihood-ratio maximization cri-
terion [7]. Recognition errors are caused by a mismatch
between training and testing conditions, making the likeli-
hood of an incorrect word larger than that of a correct word.
If stream weights could be adjusted to maximize the differ-
ence between the likelihood values obtained from the top
and other hypotheses, recognition errors could be expected
to decrease. In this method, the set of audio stream weights
Λ = {λAw} are adjusted to maximize the following equa-
tion:

L(Λ) =
T∑

t=1

∑
w∈W

{
bwt(Ot) − bw(Ot)

}2

(3)

where wt is an output word from a decoder at time t, and T
is the total length of adaptation data. From equation (3), the
variation of λAv for a word v ∈ W , denoted by ∆λAv , can
be calculated as follows:

∆λAv =
A

B
(4)

A =
T∑

t=1
wt=v

{
Nbv(Ot) −

∑
w∈W

bw(Ot)
}

+
T∑

t=1
wt �=v

{
bv(Ot) − bwt(Ot)

}

B =
T∑

t=1
wt=v

Ndv(Ot) +
T∑

t=1
wt �=v

dv(Ot)

dw(Ot) = bAw(OAt) − bV w(OV t)
Finally, the set of optimized stream weights is obtained after
iterating this process.

2.3. Optimization method based on an output likelihood
normalization

By the optimization method described above, significant im-
provements of recognition accuracy have been achieved us-
ing a large amount of speech data; however, the accuracy
sometimes decreases when using a small data set. This
degradation is caused by local optimization as a result of
the iterative process using a small size of data, or inadequate
weights due to lack of optimization data. For real-world ap-
plications, it is necessary to develop an online optimization
scheme using a small amount of speech data.

When there is a mismatch between training and testing
conditions, such as in noisy speech recognition, it is often
observed that likelihood values of some specific models al-
ways become higher or lower than any other model, and this
causes recognition errors. For example, if likelihood values
of a specific model are always low, the model is hardly se-
lected as recognition results. If dynamic ranges of the mod-
els are normalized, all the models have a more chance to
be selected as a recognition result. Hence, we propose a
new stream-weight optimization method based on an out-
put likelihood normalization criterion, in which the audio
stream weight for a word v can be computed by the follow-
ing equation:

λAv =

1
NT

T∑
t=1

∑
w∈W

b̄Aw(OAt)

1
T

T∑
t=1

b̄Av(OAt)

(5)

In the expression (5), the denominator is the average of log
likelihoods for optimization data obtained from the HMM
for the word v, whereas the numerator is the average over all
words. Thus the equation (5) means that output likelihood
values for every word hypothesis are normalized according
to the average of the values calculated over the duration
of the optimization data including different input words.
Each audio stream weight is normalized using the maxi-
mum value, before calculating a visual stream weight by the
equation (2). The proposed method has the advantage that
computational complexity is significantly reduced, since no
iteration technique is needed.

3. EXPERIMENTS

3.1. Databases

Two audio-visual speech databases were collected for train-
ing and testing [5]. The task of both databases was recogniz-
ing Japanese connected digits, each having 2-6 digits, such
as “3029 (san-zero-n ı̄-kyū)” and “187546 (ichi-hachi-nana-
gō-yon-roku)”. The first database for training was collected
in a clean condition. This database consisted of 2,750 utter-
ances by 11 speakers, each uttering 250 sequences of digits.
The second database for testing was collected in a driving
car on expressways. This consisted of 690 utterances by
six speakers, each uttering 115 sequences. There exist sev-
eral kinds of acoustic and visual noises in this database: en-
gine sounds, wind, blinker sounds as acoustic noises, and
extreme brightness changing, head shaking on bumpy roads
and slow car-frame shadow movements as visual noises.

3.2. Audio-visual ASR system

Figure 1 illustrates the structure of our audio-visual ASR
system [7]. Acoustic and video signals are recorded using
a DV system. The speech signal is converted into a 38-
dimensional acoustic vector consisting of 12-dimensional
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Fig. 1. Principle of our audio-visual speech recognition system.

cepstral-mean-normalized MFCCs and their first and sec-
ond order derivatives, as well as ∆ and ∆∆ normalized log
energy coefficients. The video signal is converted into a
9-dimensional visual vector consisting of width and height
information for a speaker’s mouth and teeth, which are mea-
sured using HMM-based techniques. After synchronizing
the frame rates of the acoustic and visual features, they are
concatenated to build a 47-dimensional audio-visual vector
and used for recognition.

Audio and visual HMMs are built sequentially [6]; the
audio HMM is trained for acoustic features, and then the vi-
sual HMM is built for visual features using a phoneme label
generated from the acoustic information. Finally, these au-
dio and visual HMMs are combined to build an audio-visual
multi-stream HMM.

3.3. Experimental setups

Recognition experiments were conducted in an unsupervised
optimization manner, applying the stream-weight optimiza-
tion based on either the likelihood-ratio maximization (A)
or the output likelihood normalization (B). In the case of
(A), optimized stream weights were obtained with 50 iter-
ations. The unsupervised maximum likelihood linear re-
gression (MLLR) adaptation [1] was applied to the mean
and variance values of the audio stream before the stream-
weight optimization process.

Speech data spoken by each speaker in the test set were
divided into six data sets, yielding 36 data sets in total. The
MLLR adaptation and the stream-weight optimization were
conducted in the following conditions: condition (i): the
stream-weight optimization was conducted using the whole
test set, and the MLLR was applied to each speaker, con-
dition (ii): the optimization and adaptation were conducted
for each speaker, and condition (iii): they were conducted
for each one of the 36 data sets.

3.4. Experimental results

Table 1 shows the digit recognition accuracy using either
stream-weight optimization (A) or (B) in condition (i) or

Table 1. Digit recognition accuracy under various conditions of
stream-weight optimization (with no MLLR adaptation).

(A) LRM (B) OLN
Audio-only 62.0%
Audio-visual No opt. 64.2%

(i) 75.6% 76.4%
(iii) 59.4% 77.8%

(A) LRM ... Likelihood-Ratio Maximization
(B) OLN ... Output Likelihood Normalization
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Fig. 2. Digit recognition accuracy as a function of the number
of digits used for stream-weight optimization by the proposed and
the previous methods.

Table 2. Digit recognition accuracy under various conditions of
stream-weight optimization (with MLLR adaptation).

MLLR only (A) LRM (B) OLN
Audio- (i) 85.1% 91.1% 90.2%
visual (ii) 88.7% 90.4%

(iii) 78.1% 76.2% 84.5%
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(iii), without the MLLR adaptation. Compared to results
obtained without applying the stream-weight optimization,
(A) and (B) methods achieved approximately 11% and 12%
improvements, respectively, in condition (i). Contrastively,
in condition (iii), the proposed method (B) achieved better
performance than the results in (i), whereas the accuracy
of the previous method (A) became lower than that of the
audio-only baseline.

Figure 2 shows the results in condition (iii), as a func-
tion of the number of digits used for stream-weight opti-
mization in each data set. For each data set, stream weights
were determined using various amounts of digit utterances,
and recognition was conducted for whole utterances of the
data set. The horizontal axis indicates the number of dig-
its used for optimization, and the vertical axis indicates the
digit recognition accuracy. The “whole set” in the horizon-
tal item means that the whole speech data (47-126 digits
according to a set) in each set were used. It is observed that
the accuracy by (A) degraded when a small number of digits
were used; and on the other hand, the more data are used,
the better the performance of (B) becomes.

Finally, Table 2 indicates the recognition results apply-
ing both the unsupervised MLLR adaptation and either of
stream-weight optimization. The whole speech data in each
set were used for the adaptation and optimization. The re-
sults show that the performance was improved by the MLLR,
and further improvements were observed by applying the
proposed method (B) in all conditions. The previous method
(A) could not improve performance in condition (iii).

These results indicate that the previous method (A) could
not properly determine stream weights when using a small
amount of optimization data, and caused degradation of rec-
ognition performance. In contrast, the accuracy of the pro-
posed method (B) was significantly improved using a small
amount of data. Therefore, it can be concluded that the pro-
posed method optimizes stream weights properly according
to the noise condition of an input data set. Experimental re-
sults shown in Figure 2 indicate that the proposed method
is capable of online stream-weight optimization. For ex-
ample, about 10% absolute improvement from the result
with no stream-weight optimization was achieved using ut-
terances of only 10 digits, roughly equivalent to 10 sec-
onds of utterances. Furthermore, by combining the stream-
weight optimization and the MLLR, roughly 23% improve-
ment was achieved compared to the result of the audio-
only method, in condition (iii). Hence, it can be concluded
that the stream-weight optimization method based on output
likelihood normalization is useful, even when the acoustic
features are adapted to noise by the MLLR method.

4. CONCLUSIONS

This paper has proposed a new stream-weight optimization
method based on an output likelihood normalization crite-

rion for multi-modal speech recognition using multi-stream
HMMs. The proposed method can achieve better perfor-
mance than the previous method for real-world data, espe-
cially in the condition where a small amount of optimization
data is used. A 23% improvement of recognition accuracy
was obtained by combining the stream-weight optimization
method and the MLLR using small data sets.

Our future works include: (1) investigation of a more
effective visual feature set requiring reduced computational
complexity, (2) testing of the proposed techniques for more
difficult tasks such as large vocabulary continuous speech
recognition (LVCSR), and (3) development of better fusion
algorithms and audio-visual synchronization methods.
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