
ACOUSTIC FEATURE COMBINATION FOR ROBUST SPEECH RECOGNITION

András Zolnay, Ralf Schlüter, and Hermann Ney
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ABSTRACT

In this paper, we consider the use of multiple acoustic features of
the speech signal for robust speech recognition. We investigate
the combination of various auditory based (Mel Frequency
Cepstrum Coefficients, Perceptual Linear Prediction, etc.) and
articulatory based (voicedness) features. Features are combined
by a Linear Discriminant Analysis based and by a log-linear
model combination based techniques. We describe the two feature
combination techniques and compare the experimental results.
Experiments performed on the large-vocabulary task VerbMobil
II (German conversational speech) show that the accuracy of
automatic speech recognition systems can be improved by the
combination of different acoustic features.

1. INTRODUCTION

Most automatic speech recognition systems use auditory based
representation of the speech signal, e.g. Mel Frequency Cepstrum
Coefficients (MFCC), Perceptual Linear Prediction (PLP), and
variations of these methods. There have been also attempts
at using articulatory information in the acoustic front-end, e.g.
autocorrelation based voicedness feature [1]. In this paper
we investigate the combination of different auditory based and
articulatory based acoustic features.

Combination of acoustic features can be carried out directly
on the level of feature vectors. In [1], liftered cepstral coefficients
derived from all-poles magnitude spectrum has been directly
concatenated with a voicedness feature. Using the concatenated
features, a large relative improvement in word error rate (WER)
has been achieved by applying discriminative training. Significant
reduction in WER has been presented using LDA based feature
combination in [2] when combining MFCCs with a phase feature
and in [3] when combining MFCCs with a voicedness feature.

Combination of acoustic features can also be performed by
log-linear model combination. In [4], different acoustic models
have been combined by log-linear combination of acoustic and
language model probabilities. The combination of 5 acoustic and
language models (within-word and across-word acoustic models,
bigram, trigram, and fourgram language models) has led to a
significant improvement in WER, compared to the best pairwise
combinations. In [5], significant reduction in WER has been
achieved by using log-linear model combination to combine
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MFCC and main spectral peak features. Combination of PLP and
modulation spectrogram features is described in [6]. Significant
reduction in WER has been achieved by feature combination via
the acoustic posterior probabilities, determined by an artificial
neural network (ANN) based acoustic model.

In this work, we have tested a LDA based and a log-
linear based feature combination methods on various feature
types. Experiments have been performed on the large-vocabulary
German conversational speech corpus VerbMobil II. On the one
hand, we will compare the two feature combination methods
on the same set of features. On the other hand, we will
present experiments in which combinations of several auditory and
articulatory based acoustic features have been tested. Experiments
have yielded improvements in WER up to 7% relative to our best
system optimized on the MFCC feature.

In the following we will first review the different feature
extraction methods in Section 2. We will describe the LDA
based feature combination in Section 3 and the log-linear model
combination based feature combination in Section 4. We will
present recognition results in Section 5 using LDA based and log-
linear based combination of various acoustic features.

2. SIGNAL ANALYSIS

In this section, we present the feature extraction methods used
in our speech recognition system. First we describe the Mel
Frequency Cepstrum Coefficients (MFCC), followed by its variant
derived from all-poles magnitude spectrum. In the next group
of features, we describe the Perceptual Linear Predictive (PLP)
feature [7] along with its alternative using a Mel scale triangular
filter bank (MF-PLP). Finally, we present an autocorrelation based
voicedness feature.

2.1. Mel Frequency Cepstral Coefficients (MFCC)

In the first step of the MFCC feature extraction algorithm, we
perform a preemphasis of the sampled speech signal. The
preemphasized samples d[n] are obtained from the original
samples s[n] by the differencing d[n] = s[n] − s[n − 1]. Every
10ms, a Hamming window is applied to preemphasized 25ms
long speech segments. We compute the short-term spectrum by
Fast Fourier Transform (FFT) along with an appropriate zero
padding. Next, we compute the outputs of 20 overlapping Mel
scale triangular filters. For each filter, the output is the sum of the
weighted spectral magnitudes. Logarithm is next applied to the
filter bank outputs followed by Discrete Cosine Transform which
generates 16 cepstrum coefficients.
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Subsequently, a cepstral mean normalization is applied in
order to account for different audio channels. Normalization is
carried out with a symmetric sliding window of 2s. In this manner,
every 10ms a feature vector consisting of 16 normalized cepstrum
coefficients is computed.

2.2. MFCC Derived from All-Poles Magnitude Spectrum

In this method, MFCCs are derived from the all-poles magnitude
spectrum estimate instead of the magnitude spectrum estimated
by using Fast Fourier Transform. Thus the only step changed in
the data flow of the MFCC algorithm is the way of calculating
the magnitude spectrum. In the all-poles estimate, the magnitude
spectrum |Xt(ω)| of a time frame t is assumed to have the form of

|Xt(ω)| ≈ gt

|1 +
∑M

k=1 at
k e−jωk| (1)

where gt is called the gain, at
k is a autoregressive coefficient,

and M is number of autoregressive coefficients. Gain and
the autoregressive coefficients can be directly calculated from
the autocorrelation coefficients by applying the Levinson-Durbin
recursion. M controls the smoothing of the magnitude spectrum.
In our experiments, M is empirically set to 18. We calculate
512 points of the all-poles magnitude spectrum and carry out the
rest of the MFCC algorithm. Finally, the 16 cepstrum coefficients
derived from the all-poles magnitude spectrum are normalization
by cepstral mean normalization as described in Section 2.1.

2.3. Perceptual Linear Predictive Analysis (PLP)

The motivation of PLP feature extraction is similar to the one of
the MFCC method but there are major differences in the data flow.

In the first step, every 10ms, Hamming window is applied
to the 20 ms long speech segments. Short-term spectrum is
calculated by applying the FFT along with an appropriate zero
padding. In the next step, a filter bank of 20 equally spaced
overlapping Bark scale trapezoid filters is applied to the power
spectrum. The filter bank is extended by an output at the frequency
0 and by another output at sample-rate / 2 by copying their right
and respectively left neighbor. Equal loudness preemphasis is
applied to the 22 filter bank outputs followed by the application
of the intensity loudness law.

In the next stage of the algorithm, the cepstrum coefficients are
not directly derived from the output of the intensity loudness law
but from the all-poles approximation of it. First, autocorrelation
coefficients are calculated by applying the Inverse Discrete Fourier
Transform to the output of the intensity loudness law. Next, the
17 autocorrelation coefficient are transformed to the gain and to
16 autoregressive coefficients by the Levinson-Durbin recursion.
Instead of regenerating the smoothed, all-poles approximation of
the output of the intensity loudness law, we can directly compute
the 16 cepstrum coefficients by applying a simple recursion. The
zeroth cepstrum coefficient is explicitly set to the logarithm of the
square of the gain. Finally, cepstral mean normalization is applied
to the cepstrum coefficients as described in Section 2.1.

2.4. PLP Derived from Mel scale Filter Bank (MF-PLP)

In this method, the MFCC and PLP techniques are merged into
one algorithm. The first steps until generating the output of

the Mel scale triangular filter bank are taken from the MFCC
algorithm. The only difference here is that the filter bank is applied
to the power spectrum instead of the magnitude spectrum. The
last steps generating the cepstrum coefficients are taken from the
PLP algorithm. The 20 filter bank outputs are modified by the
intensity loudness law. The 16 cepstrum coefficients are calculated
from the output of the intensity loudness law via the all-poles
approximation as described in Section 2.3. Finally, cepstral mean
normalization is applied as described in Section 2.1.

2.5. Voicedness Feature

Voicedness feature is a measure representing the state of the
vocal cords. The measure describes how periodic the speech
signal is in a given time frame t. We use the autocorrelation
function to measure periodicity. Autocorrelation Rt(τ) expresses
the similarity between the time frame xt(ν) and its copy shifted by
τ . We have used the unbiased estimate of autocorrelation R̃t(t):

R̃t(τ) =
1

T − τ

T−τ−1∑
ν=0

xt(ν) xt(ν + τ) (2)

where T is the length of a time frame. Autocorrelation of periodic
signals with frequency f attains its maximum Rt(0) not only at
τ = 0 but also at τ = k

f
k = 0,±1,±2, ... integer multiples of

the period. Therefore, a peak in the range of natural pitches with a
value close to Rt(0) is a strong indication of periodicity.

In order to produce a bounded measure of voicedness,
autocorrelation is divided by R̃t(0). The resulting function
has values mainly in the interval [−1..1] although because
of the unbiased estimate, theoretically any value is possible.
The voicedness measure vt is thus the maximum value of the
normalized autocorrelation in the interval of natural pitch periods
[2.5ms..12.5ms]:

vt =

max
2.5ms·fs≤τ≤12.5ms·fs

R̃t(τ)

R̃t(0)
(3)

where fs denotes the sample rate. Values of vt close to 1 indicate
voicedness, values close to 0 indicate voiceless time frames.
The autocorrelation function is determined every 10ms on speech
segments of 40ms length. By applying (3) to the autocorrelation,
a one dimensional voicedness feature is generated every 10ms.

3. LDA BASED FEATURE COMBINATION

The Linear Discriminant Analysis (LDA) based approach
combines directly the different acoustic feature vectors. In
[8], LDA has been used successfully to find an optimal linear
combination of successive vectors of a single feature stream. In
the following steps, we describe a straightforward way to use this
method for feature combination. In the first step, feature vectors

extracted by different algorithms xfi
t are concatenated for all time

frames t. In the second step, 2L + 1 successive concatenated
vectors are concatenated again for all time frames t which makes
up the large input vector of LDA. With L = 5 and with F = 3
different features, size of the LDA input vector grows up to ≈ 400
components. Finally, the combined feature vector yt is created by
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projecting the large input vector on a smaller (≈ 30 dimensional)
subspace:

yt =
[

V T
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

xf1
t−L

· · ·
xfF

t−L

⎤
⎥⎦

· · ·⎡
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xf1
t

· · ·
xfF

t

⎤
⎥⎦

· · ·⎡
⎢⎣

xf1
t+L

· · ·
xfF

t+L

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where the matrix V is determined by LDA such that it conveys
the most relevant classification information to yt. The resulting
acoustic vectors are used as well in training and as in recognition.

In all our experiments, we have concatenated 11 successive
feature vectors (L = 5). The baseline experiments using a single
feature apply LDA in the same way. The only difference is in
the size of the LDA input vector and thus in the size of the LDA
matrix. The resulting feature vector has the same size to ensure
comparable recognition results.

4. LOG-LINEAR MODEL COMBINATION

In this approach, different acoustic features are combined
indirectly via the log-linear combination of acoustic probabilities
Pfi(X

fi |W ) where W denotes a sequence of words and Xfi

denotes a sequence of feature vectors extracted by the algorithm
fi. The basic idea is to modify the modeling of the posterior
probability P (W |X) in Bayes’ decision rule:

Wopt = argmax
W

P (W |X). (5)

In the standard case, posterior probability is decomposed into
language model probability P (W ) and acoustic model probability
P (X|W ):

P (W |X) =
P (W )P (X|W )∑

W ′ P (W ′)P (X|W ′)
. (6)

In the case of log-linear model combination, the posterior
probability has the following form:

P (W |X) =
e

∑
i

λigi(W,X)

∑
W ′ e

∑
i

λigi(W ′,X)
(7)

where gi is a so called feature function which is an arbitrary
function of the word sequence W and the feature vector sequence
X , and λi is the corresponding log-linear weight. Applying the
log-linear modeling approach to speech recognition, the basic
feature function types are negative logarithm of probabilities:

• language model: gLM
i (W, X) = − log Pi(W ),

• acoustic model: gAM
i (W, X) = − log Pi(X|W ).

Finally, in order to combine different acoustic features, we
introduce a separate acoustic model Pfi(X

fi |W ) for each feature.
Using a single language model feature function and for each

feature a separate acoustic model feature function, the Bayes’
decision rule for log-linear feature combination can be written as:

Wopt = argmax
W

P (W )λLM
∏

i

Pfi(X
fi |W )

λfi . (8)

Acoustic training of the combined system consists of two steps:
independent training of each acoustic model Pfi(X

fi |W ) and
training of the language model weight λLM and the acoustic model
weights λfi . In this work, we have run a standard maximum
likelihood training to estimate the acoustic model parameters.
Model weights have been optimized empirically.

5. EXPERIMENTAL RESULTS

5.1. Baseline Recognition System

Recognition tests have been conducted on the large-vocabulary
corpus VerbMobil II. The corpus consists of German
conversational speech: 36k training-sentences (61.5h) from
857 speakers and 1k test-sentences (1.6h) from 16 speakers. The
baseline recognition system can be characterized as follows:

• recognition vocabulary of 10157 words;
• 3-state Hidden Markov Model topology with skip;
• 2501 decision tree based within-word triphone states

including noise plus one state for silence;
• 237k gender independent Gaussian densities with global

pooled diagonal covariance;
• class-trigram language model, test set perplexity: 62.0;
• 33 acoustic feature components after applying LDA.

In Table 1, we summarize results achieved by our recognition
system optimized for different acoustic features: MFCC, vocal
tract length normalized MFCC (MFCC-VTLN), MFCC derived
from all-poles magnitude spectrum (MFCC-AllPoles), PLP, and
PLP coefficients derived from Mel scale triangular filter bank (MF-
PLP).

Acoustic Feature Error Rates [%]
Del Ins WER

MFCC 6.3 2.4 23.1
MFCC-VTLN 5.0 2.7 21.3

MFCC-AllPoles 6.2 2.7 24.2
PLP 6.6 2.3 23.1

MF-PLP 6.2 2.7 23.2

Table 1. Baseline recognition results with different features.

5.2. Comparison of LDA Based and Log-Linear Combination

In this section, we describe experiments in which we combine
several different acoustic features by the LDA based and by the
log-linear based combination method.

LDA based method combines the different feature vectors
directly, generating a single feature. Using the single combined
feature stream, a standard acoustic model is trained under the
settings given in Section 5.1. When using log-linear model
combination, a separate acoustic models is trained for each feature.
The different acoustic models are trained as well under the settings
described in Section 5.1. This implies that each training includes
the estimation and the application of an LDA matrix. In these
cases, LDA does not combine different features but it finds an
optimal linear combination of successive vectors of the same
feature stream. The number of acoustic feature components after
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LDA Log-Linear
Combined Features Error Rates [%] Combined Features Error Rates [%]

Del Ins WER Del Ins WER

MFCC + Voice 5.7 2.8 22.4 MFCC + Voice 6.1 2.7 23.0
MFCC + LDA(MFCC + Voice) 5.9 2.7 22.2

MFCC-VTLN + Voice 5.1 2.6 20.8 MFCC-VTLN + LDA(MFCC + Voice) 5.3 2.3 20.3
MFCC + MFCC-VTLN + Voice 5.1 2.5 20.7 LDA(MFCC + Voice)+LDA(MFCC-VTLN + Voice) 5.3 2.2 19.9

Table 3. Recognition results of combining MFCC, vocal tract length normalized MFCC (MFCC-VTLN), and voicedness features (Voice).
On the left, features are combined by LDA, on the right by log-linear model combination. LDA(MFCC + Voice) denote an acoustic model
trained on the LDA based combination of MFCC and voicedness features.

Combined Features Error Rates [%]
Del Ins WER

MFCC 6.3 2.4 23.1
MFCC + MFCC-AllPoles 5.8 2.5 22.6

MFCC + MF-PLP 6.0 2.6 22.9
MFCC + MF-PLP + PLP 5.6 2.6 22.1

Table 2. Recognition results of combining state-of-the-art features
(MFCC, MFCC derived from all-poles magnitude spectrum, MF-
PLP, and PLP) by using log-linear model combination.

applying the LDA matrix is set in case of MFCC, PLP, or in
case of one of their variants to 33 components and in case of the
voicedness feature to 1 component. After the training of acoustic
models, the log-linear weights are optimized empirically using
a simple grid search. Additionally, a useful option is to reuse
features combined by LDA as a separate feature stream in the log-
linear combination method.

Results of experiments combining state-of-the-art, auditory
based features are summarized in Table 2. In spite of their common
basic data flow, the log-linear based combinations of different
auditory based features yield significantly better word error rates
when compared to systems optimized on a single feature.

Table 3 summarizes the experimental results of combining
MFCC, MFCC-VTLN, and voicedness features. Results show
that the LDA based feature combination outperforms the log-linear
model combination on small dimensional features, e.g. MFCCs
combined with a single voicedness feature. Nevertheless we
achieve significant improvements in WER if we reuse the LDA
based combination of small dimensional features nested into the
log-linear model combination. As shown in Table 3, we can reuse
the acoustic models trained on the LDA based combination of
the voicedness feature on the one hand with the MFCC feature
and on the other hand with the MFCC-VTLN feature. The
log-linear combination of the resulting acoustic models yields
a significant improvement in WER over the pure LDA based
combination of the three concerned features. One possible
interpretations of the results is that with increasing number of
features, the constant amount of training data become insufficient
to robustly estimate the heavily enlarged within- and between-
class scatter matrices. This may lead to numerical instability when
solving the generalized eigenvalue problem. Another possibility
for interpretation is that since we keep the number of output
coefficients of the LDA constant, applying a single LDA matrix
on increasing number of different feature vectors cannot convey
as many classification information as the LDA matrices applied in
the separate acoustic models of log-linear model combination.

6. SUMMARY

In this paper, we have analyzed two aspects of acoustic feature
combination. On the one hand, we have compared an LDA based
feature combination method and a log-linear model combination
based method. Experiments have shown that LDA based
combination nested into the log-linear model combination yields
the best recognition result. On the other hand, we have performed
experiments in which we have combined several different acoustic
features. Despite their common basic structure, the combination
of different state-of-the-art auditory based features resulted
significant improvements in WER. The combinations of auditory
based and articulatory based features have yielded up to 7%
relative improvements in WER over the optimized single feature
systems. Our future work includes extending the number of
combined acoustic features and systematically analyzing the
presented feature combination techniques.
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