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ABSTRACT

In this paper, we present a HMM/ANN based algorithm to estimate
the spectral peak locations. This algorithm makes use of distinct
time-frequency (TF) patterns in the spectrogram for estimating the
peak locations. Such an use of TF patterns is expected to im-
pose temporal constraints during the peak estimation task, thereby
yielding a smoother estimate of the peaks over time. Additionally,
the algorithm use an ergodic topology for the HMM/ANN, thus
allowing an estimation of a varying number of peak locations over
time. The usefulness of the proposed algorithm is evaluated in
the framework of a recently introduced noise robust feature called
spectro-temporal activity pattern (STAP) feature. Interestingly, re-
cently introduced, phase autocorrelation (PAC) spectrum, with en-
hanced spectral peaks and smoothed spectral valleys, turns out to
be more appropriate for this algorithm than the regular spectrum.

1. INTRODUCTION

Speech signal exhibits spectral and temporal amplitude modula-
tions [1]. Typical speech recognition systems makes use of them
by considering spectral representation of the speech signal over
the entire span of the frequency axis and over a limited span of
the temporal axis. However, this is in quite contrast to the hu-
man auditory processing which has been shown to process local
time-frequency (TF) patterns. Physiological studies conducted on
mammalian auditory cortex show evidences for recognition of lo-
cal TF patterns by the auditory cortical neurons during the pro-
cess of recognizing sounds [2]. Another interesting aspects of hu-
man perception is a phenomenon called noise masking, as a result
of which, unreliable components are either masked or discarded
while recognizing the sound in the presence of noise.

These two interesting aspects of the human auditory process-
ing (the local TF pattern processing and the noise masking) have
served as motivation for the development of a recently introduced
noise robust feature called spectro-temporal activity pattern (STAP)
feature [3]. STAP features are computed by parameterizing the lo-
cal TF patterns around the spectral peaks. As the regions around
spectral peaks constitute relatively high SNR part of the speech
signal, STAP features show improved robustness to high noise
conditions [3]. Because of the use of TF patterns around spectral
peaks, the effectiveness of the STAP features depend very much
upon the estimation of the spectral peak locations. In the pre-
vious work [3], a simple frequency-based dynamic programming
(DP) algorithm, that utilize the spectral slope values of single time
frame, has been used to perform the peak location estimation.

�Also with EPFL, Lausanne, Switzerland.

In this paper, we present a peak estimation algorithm that dif-
fers from the previous frequency-based DP method in two aspects.
First, the method uses an alternative to the regular spectrum called
phase autocorrelation (PAC) spectrum. Second, the method uses
multi-layer perceptron (MLP) in a simple HMM/ANN [4] frame-
work, for TF pattern modeling in the spectrogram. The use of
PAC spectrum is expected to yield more reliable peak location in-
formation, as it has been shown to have enhanced spectral peaks
and smoothed spectral valleys than the regular spectrum [5]. The
use of MLP in a HMM/ANN framework makes it possible to learn
distinct TF patterns in the spectrogram, hence locate the peaks by
discriminating between the TF patterns.

This paper is organized as follows: Sections 2 and 3, give a
short introduction to the STAP features and PAC spectrum, re-
spectively. Section 4 gives a description of the HMM/ANN based
algorithm for peak location identification. Section 5 explains the
experimental set up used to evaluate the STAP feature computed
using the proposed algorithm. Section 6 presents and discusses the
experimental results.

2. STAP FEATURE

Inspired by the two interesting aspects of the human auditory pro-
cessing system namely, the local time-frequency processing [2]
and the noise masking, the STAP approach use parameterization
of local TF patterns around the spectral peaks as noise robust fea-
ture representation for the speech recognition task [3]. The ef-
fectiveness of the STAP feature depends upon two crucial factors,
namely: 1) spectral peak identification, and 2) parameterization
scheme used for describing the activity within local TF patterns
around the spectral peaks. In the previous work, peak identifi-
cation is performed using a simple frequency-based DP algorithm
that utilize the single time frame spectral slope values [3]. One dis-
tinguishing aspect of this algorithm from the other spectral peak
estimation algorithms, reported in the literature, is the fact that
there is no constraint imposed on the number of peaks that should
be estimated, which in turn avoids possible erroneous estimation
of the peak location. An erroneous estimation would lead to in-
clusion of TF patterns from the non-peak locations in the STAP
feature computation.

The parameterization scheme used to describe the activity pat-
tern within TF patterns (i.e., the energy surface), for use in STAP
feature are: 1) frequency index of the peak location, 2) energy
at the peak location or average energy of the whole TF pattern,
3) delta of energy around peak location along the time axis, 4)
acceleration of energy around peak location along the time axis,
5) delta of energy around peak location along the frequency axis,
and 6) acceleration of energy around peak location along the fre-
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quency axis. An important note to make here is, the STAP features
computed according to above explained method will yield feature
vectors of varying dimensions over time. This is because the num-
ber of peaks identified can vary over time and TF patterns only
around the spectral peaks are considered for computing the STAP
features. However, traditional speech recognition system requires
uniform dimensional feature vectors. To handle this, as explained
in [3], the parameters describing activity within TF patterns around
non-peak locations are first masked to be zeros and are then used
in the feature vector. This results in many components with zero
values in the uniform dimensional STAP features.

There is a good scope improving the frequency-based DP al-
gorithm for peak estimation from two different directions. First,
recently, an alternative to the regular spectrum called PAC spec-
trum has been introduced in [5]. PAC spectrum has been shown
to possess enhanced spectral peaks and smoothed spectral valleys,
which makes it an interesting choice for use in the peak estimation
algorithm. Second, the frequency-based DP algorithm considers
spectral energy values of only single time frame. This may lead
to an unrealistic variation in the estimated peak locations from one
frame to the other. In such case, an imposition of temporal con-
straint during the peak identification can be expected to provide
more reliable peak location estimation.

The next section gives a brief introduction of the PAC spec-
trum and the following section explains a HMM/ANN based method
that imposes temporal constraints during the spectral peak identi-
fication.

3. PAC SPECTRUM

Time-domain Fourier equivalent of power spectrum is autocorre-
lation [6]. Traditional autocorrelation computes correlation as a
dot product between the time delayed speech vectors. Recently, an
alternative measure of autocorrelation called phase autocorrelation
(PAC) has been introduced, where the angle between the vectors
in the signal vector space is used as a measure of correlation [5].
The motivation for the use of angle is the fact that angle gets less
affected in the presence of noise than the dot product [7]. If ����
represents the traditional autocorrelation coefficients, then the PAC
coefficients can be computed as follows:

� ��� � �����
�
����

����

�
(1)

where ���� represents the signal frame energy. Spectrum com-
puted using PAC coefficients is referred to as the PAC spectrum.
The computation of PAC coefficients from the autocorrelation co-
efficients, using (1), involves two operations namely: 1) energy
normalization, and 2) inverse cosine. As explained in [5], the in-
verse cosine transformation has an effect of enhancing the spectral
peaks and smoothing out the spectral valleys. A visual illustration
of these are given in Figures 1 and 2, showing respectively the reg-
ular and the PAC spectra, for a sample speech frame corresponding
to phoneme /ih/.

4. HMM/ANN BASED PEAK IDENTIFICATION

The use of HMM/ANN for spectral peak identification is basically
motivated by a previous work, where HMM employed along the
frequency axis (in a general framework called HMM2 [8]) has
been shown to be successful in identifying a fixed number of spec-
tral peaks. In the current case, a simple HMM/ANN is used along
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Fig. 1. Energy normalized power spectrum for a sample frame of
phoneme /ih/.
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Fig. 2. PAC power spectrum for a sample frame of phoneme /ih/.

frequency axis to locate the spectral peaks. HMM/ANN use multi-
layer perceptron (MLP) for emission modeling, as opposed to the
previous HMM2 case where Gaussian Mixture Models (GMM)
are used. The use of MLP provides an additional flexibility to use,
more general, TF patterns in the spectrogram for the peak identi-
fication task, as the MLP has been shown to be more effective in
handling the temporal contextual information [4]. The inclusion of
such temporal contextual information is expected to impose tem-
poral constraints for the peak identification. Another difference
between the current and the previous HMM2 based approach is
the fact that topology of the HMM/ANN used do not constraint the
number of peak locations to be identified. Figure 3 shows topology
of a simple HMM/ANN applied to the spectrum, for estimating the
peak locations.

I
1 2

F

Fig. 3. Topology of the HMM/ANN used to locate the spectral
peaks. The states have a minimum duration of 2 (frequency bands).

For the successful use of HMM/ANN for the peak identifica-
tion task, first of all, the constituent states should learn the distinct
TF patterns in the spectrogram. For example, suppose along fre-
quency axis, the TF patterns before the spectral peaks are modeled
by the first state and the TF patterns after the spectral peaks are
modeled by the second state. With such a learning, while Viterbi
aligning the HMM/ANN along frequency axis, it is possible to lo-
cate the spectral peaks as points of transition from the first state to
the second state. Now the training of HMM/ANN and its use for
peak identification task raises a few issues explained as follows:

1. The presence of pitch information in the raw spectrum in-
troduces small peaks and dips throughout the frequency range.
To avoid this mel-frequency filter bank spectrum is used,
where pitch information is reasonably suppressed. Addi-
tionally states of HMM/ANN, as shown in Figure 3 are im-
posed with minimum duration constraints to avoid spurious
peaks. For the current case, mel-warped filter bank PAC
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spectrum of 24 dimension is used, and the minimum state
duration value is fixed as � (frequency bands).

2. There is no transcription available during the training of
the HMM/ANN for discriminating the spectral regions into
hypothesized classes, i.e., TF patterns before the spectral
peaks (positive sloped TF patterns) and TF patterns after
the spectral peaks (negative sloped TF patterns). In this
sense, the training of the HMM/ANN need to be unsuper-
vised. The convergence of such unsupervised training into
segmentation of hypothesized regions is not always guaran-
teed. However, an use of slope spectrum facilitates this to a
certain extent. Additionally, the topological constraints of
the HMM/ANN along with minimum duration constraints
is expected to further facilitate the convergence.

The experimental set up used to evaluate the performance of
the STAP feature (computed using the peak locations estimated by
the proposed algorithm) is explained in the next section.

5. EXPERIMENTAL SETUP

The database used for the experiments is OGI Numbers95 con-
nected digits telephone speech database [12], having a lexicon size
of 30 words, and 27 different phonemes. For additive noise exper-
iments, factory noise from Noisex92 database has been added with
Numbers95 database at various noise levels, such as 12dB, 6 dB,
and 0 dB Signal-to-Noise Ratio (SNR). The speech recognition
system used to compare the STAP features with the state-of-the-
art features is TANDEM system [9]. TANDEM system use pre-
nonlinearity outputs taken from a discriminatively trained MLP as
feature input to the standard HMM-GMM system. MLP used takes
9 or 19 frames of contextual input and has 27 output units, corre-
sponding to the number of context-independent phones. Hidden
layer size is proportional to the feature dimension1. The HMM-
GMM system consists of 80 triphones, 3 left-to-right states per
triphone, and 12 mixture Gaussian Mixture Model (GMM) to es-
timate emission probability within each state. HMMs are trained
using HTK. Mel-Frequency Cepstral Coefficient (MFCC) and CJ-
RASTA-PLP [10] are the features used to evaluate the comparative
performance of the STAP features. These features are of dimen-
sion 39, including 13 static coefficients, 13 delta coefficients, and
13 delta-delta coefficients. STAP features are basically extracted
from spectrogram obtained with 24 dimensional mel-warped filter-
bank spectrum. For the peak location estimation mel-warped filter-
bank PAC spectrum is used. Including all the time-frequency pat-
tern activity describing parameters, as listed in Section 2, STAP
feature dimension is 60. However, as explained in Section 2, many
of its components (typically 35-45 components) are zeros.

6. EXPERIMENTAL RESULTS

Assuming the HMM/ANN has been trained on PAC spectrogram
of several utterances, the main factor that affects the peak location
estimation performance is the size of the TF patterns, as denoted
by �� ���, width along the frequency axis times width along the
temporal axis. Figure 4 shows the peak locations identified when
�� � � and �� � �, for a sample PAC spectrum belonging to
phoneme /ih/.

1This may raise speculations about the differences in the number of
parameters for different features. However, it has been verified that the
performances do not change significantly with the parameter increase.
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Fig. 4. Spikes show the locations of peaks identified in an example
filter-bank PAC spectrum corresponding to phoneme /ih/.

Figure 5 shows PAC spectrogram of a sample utterance taken
from OGI Numbers95 database. Figures 6, 7, and 8 show plots
of the peak locations identified by the proposed algorithm for the
respective TF pattern sizes as follows:: Figure 6: �� � � and
�� � �, Figure 7: �� � � and �� � �, and Figure 8: �� � � and
�� � �. From the figures, for the case of �� � � and �� � �, the
peak locations estimated looks to be random. The reason for this
could be the fact that when single coefficient is used as TF pattern,
the MLP is not able to converge to the hypothesized distinct TF
patterns, as explained in Section 3. However, with better TF pat-
tern size it is expected to behave well. For the case of �� � � and
�� � �, a better match between the peaks identified and the actual
peak locations in the Figure 5 can be seen. For the case of �� � �

and �� � �, with the increase of TF block size the peak location
estimation seems to get more constrained by the temporal context
and also possibly by the width along frequency axis. STAP fea-
tures used for experiments reported in the later part of this section
are computed with TF pattern size of �� � � and �� � �.
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Fig. 5. Mel-warped filter-bank spectrogram of a sample speech
utterance taken from OGI Numbers95 database.
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Fig. 6. Peak locations identified when TF block size of �� � �

and �� � �.

The first three lines of Table 1 show results of the experiments
conducted to evaluate and compare the speech recognition perfor-
mance of the STAP features (computed using peak locations iden-
tified by the proposed HMM/ANN based algorithm in the PAC
spectrum) with MFCC and CJ-RASTA-PLP features, for clean
speech as well as various noise levels of factory noise corrupted
speech. As can be seen from the table, the STAP feature is compar-
atively more robust to high noise conditions. Also in the high noise
conditions, its performance is comparable to the CJ-RASTA-PLP.
However, it is inferior to the other features in clean speech condi-
tion. The reason for this (as also explained in [3]) is the masking
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Fig. 7. Peak locations identified when TF block size of �� � �

and �� � �.
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Fig. 8. Peak locations identified when TF block size of �� � �

and �� � �.

of non-peak components which also carry significant information
for the clean speech recognition. This can be compensated for
by combining the STAP features with MFCC features in a TAN-
DEM feature combination framework, as explained in [11]. Such
a combination is expected to yield a representation that is reason-
ably robust in all the conditions. Fourth row of the table show
the performances of such combination. The values show that the
combination is reasonably robust in all the conditions. The fifth
row give results for the case when the regular spectrum is used,
instead of the PAC spectrum, in the HMM/ANN based algorithm
to estimate the peak locations, keeping all other experimental set-
tings the same. As can be seen from the results, using the PAC
spectrum for spectral peak identification is better than using the
regular spectrum, for all conditions.

%Word Error Rate for SNR
Feature clean 12 dB 6 dB 0 dB
STAP 10.6 15.3 22.1 38.3
MFCC 4.7 12.9 25.8 52.4

CJ-RASTA-PLP 6.3 10.4 20.4 44.7
STAP + MFCC 6.7 11.7 19.1 37.0
reg-spec-STAP 14.8 19.9 27.7 45.7

Table 1. Performance comparison of STAP, MFCC, and CJ-
RASTA-PLP features in TANDEM system (peak locations re-
quired for the computation of STAP feature is estimated from the
PAC spectrum). Fourth row gives performance of the combina-
tion of STAP and MFCC features in a TANDEM framework. The
last row gives performance comparison of the STAP features when
peak locations are identified using the regular spectrum.

7. CONCLUSION

We have presented a HMM/ANN based algorithm for spectral peak
location estimation using the PAC spectrum for further use in the
computation of STAP features. This algorithm uses distinct time-
frequency patterns in the PAC spectrogram for the peak identifi-
cation task. Such use of time-frequency patterns imposes tem-
poral constraints during the peak identification. Additionally, the
use of PAC spectrogram facilitates a more reliable estimation of

peak locations as it has enhanced spectral peaks and smoothed
spectral valleys than to the regular spectrogram. Experimental re-
sults conducted to evaluate the performance of the STAP features,
computed with peak information from the HMM/ANN based algo-
rithm, shows robustness to high noise conditions. The combination
of the STAP feature with MFCC feature in a TANDEM framework
show a reasonable robustness in all the conditions.
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