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ABSTRACT

We show the effect of reverberation on the speech recog-
nition performance in a far-field microphone. Given a ref-
erence of close-talk microphone signal, an improvement is
shown using asymmetric non-causal inverse filter both in
a synthetic and real room environment. Its variants in time
and frequency domain are also presented and compared with
other existing techniques. We argue for the approaches which
specifically consider recognition performance as a goal in
deriving the dereverberating schemes, with evaluation on
real room recording recognition, as a future direction for
solving reverberation problem in speech recognition.

1. INTRODUCTION

The performance of a speech recognizer on utterances from
a far-away microphone suffers greatly from reverberation
effect as well as low signal-to-noise ratio. This prevents
an effective use of speech recognition engine in hands-free
environment, for example, in a car cockpit. A number of
approaches to tackle this problem have been proposed over
the last few decades, including matched training and the
use of reverberation-robust features. A number of algo-
rithms which try to undo the effect of reverberation have
also been proposed and studied extensively. The problem
of non-minimum phase system inversion makes inverse fil-
tering difficult. Each algorithm in this area deals with this
problem differently but most only direct the result towards
equalizing room or loud-speaker response for listening pur-
pose [1] [2]. Though such perceptual goal usually relates to
better recognition result, this is not necessarily the case. Al-
gorithms which specifically try to improve recognition per-
formance directly, with attention to a speech recognizer’s
characteristics and behaviors, might be desired. Few ex-
amples in this direction include [3] [4] and [5]. Few also
show results in real speech recognition tests. While the cur-
rent trend in solving reverberation problem seems to be in
the direction of using multiple microphones [6] [7], a single
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microphone situation is still worthy of consideration. Be-
sides lower cost, some blind source separation algorithms
which try to avoid source whitening will need single chan-
nel dereverberation post processing.

Given the above motivations, we investigate the prob-
lem of single channel dereverberation with the goal of im-
proving speech recognition result as a primary objective. To
better understand what happens, we look at dereverbera-
tion given a reference speech signal from a close-talk mi-
crophone. This is more practical in many situations than
using non-speech signal as a probe signal. Though it is not
quite a simple system identification problem due to speech
characteristics such as sparseness and non-stationarity.

2. SPEECH DEREVERBERATION WITH
REFERENCE

In this paper, we use a speech recognizer engine version
8.0 from Nuance with no additional “out-of-box” modifica-
tion. The test set utterances are limited vocabulary isolated
words recorded by a close-talk and far-away microphone in
an office room environment. Isolated word utterances were
chosen to avoid variation of acoustic path for the purpose
of our study. The room dimension is 3.4 x 3.7 x 2.65 m
while the microphones separation is 40 cm. The total num-
ber of utterances is 1380 from 17 subjects. Care was taken
to make sure they are long enough for reliable filter estima-
tion. Only the speech segment is used in estimation for high
SNR samples.

As a baseline reference, we performed a recognition test
on close-talk and far-field speech signals. The results of
recognition error rate are shown in Table 1. The last column
shows the result of the close-talk speech signal mixed with
more noise to give the same SNR as the far-field. The result
indicates that most degradation comes from the reverbera-
tion.

2.1. Linear Least-squares (LS) Solution

A linear time-invariant system parameters can be estimated
using least-squares (LS) technique from the following equa-
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Signal Close-talk Far-field Noisy close-talk
Error rate 9.1% 17.1% 9.8%

Table 1. Speech recognition error rate for close-talk, far-
field and close-talk with the same SNR as far-field

tion [8]

Rw = d (1)

In this paper, the inverse system is modeled as an FIR filter
directly. So w will be the required inverse filter coefficients,
d is the close-talk signal while R contains far-field data.

By directly modeling the inverse system, we avoid ac-
cumulated error and the problem of inverting a deep notch
commonly associated with inverse filtering approaches. How-
ever, since the room reverberation in general is non-minimum
phase, the structure needs to allow for this compensation in
some form e.g. using non-causal filter. However, letting
the filter have long anti-causal taps raises the problem of
pre-echo which brings down the performance of the speech
recognizer considerably (similar to Haas effect but reverse
in time order).

In this work, the filter is allowed to have shorter anti-
causal part to keep the pre-echo subdued, resulting in an
asymmetric shape (practically implemented causally with
delay). Similar truncation is also used to deal with pre-echo
problem in a matched filtering algorithm for microphone ar-
ray in [7].

2.2. Mean Squared Error (MSE) Solution

Instead of fitting the speech data themselves using least-
square, statistical minimum mean square error (MMSE) so-
lution can be derived by replacing R with, Ryy, the auto-
correlation matrix of y(t) and d by, Ryx the cross corre-
lation of y(t) and x(t) [8]. This is the so-called Wiener
filter. The computational complexity of matrix inversion is
greatly reduced because of the Toeplitz structure in Ryy.
The recognition results have been verified to be more or less
the same as those of LS in our experiments (within 1% dif-
ference). Therefore, only recognition results from MMSE
solution are shown for time-domain solutions in Figure 1
and 2.

2.3. Weighted Least Squares (WLS)

In [3], it is demonstrated that long reverberation has more
negative impact on recognition than the signal-to-reverberation
ratio. The binary-weighted least square (BWLS) solution is
then proposed which penalizes the squared error more in the
tail region while leaving as “don’t care”, a period of time
right after the direct signal arrives. It is assumed that the
forward path impulse response is known in advance. The

Error rate Te=18.7ms Te=25ms
Early reverb only 11.17% 11.17%
Late reverb only 18.06% 17.4%

Table 2. Recognition error rate (%) for early or late reverb
part only for early reflection period Te taken to be 18.7 ms
and 25 ms

estimated filter was shown to give a better recognition per-
formance than conventional least squares.

Room reverberation can be divided into two parts : the
early and late reverberation. Early reverb refers to the part
where room impulse response is still sparse while late re-
verb is the later denser part. Most of the spectral coloration,
which surely affects speech recognition features, comes from
early reverberation. The question then arises on how much
each part of the reflections affect the recognition perfor-
mance. To find out, we conducted an experiment where a
synthetic room impulse response is generated using an im-
age method [9]. A close-talk speech signal is then filtered
by the whole impulse response, the early reflection part and
then the late reflection part (including direct signal delay),
resulting in three copies of reverberant signals. The dimen-
sion of the room used is 4 x 4 x 2.5 m with a reverberation
time (T60), for the energy to drop 60 dB, of 0.23 seconds.
Table 2 shows the recognition error rate for different dura-
tions taken to be an early reflection period. The value of
Te = 18.7 ms is the time when the impulse response’s re-
gion of sparse delays end and dense non-zero values starts.
The other value of Te = 25 ms is for comparison with result
in [3].

The results supports the claim in [3] that the late echoes
have more negative impact on recognition than the early
ones. However, it has been found in our experiments, both
with synthetic and real reverberation, that letting the filter
taking values freely in the “don’t care” region as in BWLS
leads to severe spectral distortion (mainly lowpassed) de-
spite the reduction in trailing echoes. This leads to inferior
recognition results. Instead, by weighting the previously
“don’t care” region by just a small weight, the estimated fil-
ter is constrained to be well-behaved in both regions. The
relative weights allow more control in a trade-off between
early and late reflection regions. The results applying WLS
to a synthetic reverberated speech mentioned earlier, using
1024-tap filter, is given in Table 3. The discrepancy from
[3] is most likely because of shorter utterances used here so
that the benefit of suppressing more of late reverb over short
reverb is not as pronounced.

2.4. Frequency Domain Approach

Here, a frequency domain counterpart of the previous least-
squares in section 2.1 is presented. A convolution in time
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Weight 0 0.1 1
Error rate 25.74% 17.98% 17.69%

Table 3. Recognition error rate for WLS using weights 0,
0.1 and 1 on the first 25 ms after first reflection

is transformed to a multiplication in frequency. For each
DFT frequency bin, we solve for a complex least-squares
solution of the filter’s transform, W (k), from the following
equation

X{m}(k) = W (k)Y{m}(k) (2)

for k = 1, ..., NFFT , where NFFT is the length of DFT
and X{m}(k) and Y{m}(k) are vectors of complex valued
input and output DFT at bin k respectively, taken from a
set of STFT frames {m} with significant energy above a
threshold δE . After all frequency bins have been estimated,
the filter w(t) is obtained by IDFT . The immediate re-
sult will, however, be in a zero-phase form which requires
“FFTSHIFT ” operation to get w(t) ready for filtering
in MATLAB. Asymmetric structure can then be imposed
by truncation of this non-causal filter. The pre-echo behav-
ior also exists in this approach if long anti-causal part filter
is used (including directly multiplying the estimated W (k)
and Y (k) before IDFT). The length of FFT used must be
long enough to allow for ringing of convolution in time.

There are a number of motivations behind the use of fre-
quency domain approach. One is the computational com-
plexity. From (2), the least squares solution only requires
complex vector multiplication, as opposed to doing a ma-
trix inverse like in time-domain LS. However, a direct com-
parison is not possible since it also depends on the hop-rate
and the size of FFT used, among other things. A more im-
portant issue is, perhaps, frequency domain estimation al-
lows more room for manipulation on SNR selection. It also
allows for an emphasis on what matters to the application
e.g. psychoacoustic for listening and feature-based spectral
shaping for speech recognition. The room for better manip-
ulation extends to band-wise processing. Since in physical
room, high frequency usually decays much faster than the
low frequency, we can achieve better performance and ef-
ficiency by having shorter filter for high-frequency compo-
nents and longer for low-frequency ones. In this paper, how-
ever, we only compare simple energy-selective solutions as
described above, leaving the rest as future work.

3. DISCUSSION

Figure 1 shows error rate of speech recognition for various
length combinations of filters, applied to synthetic rever-
beration. A definitely non-minimum phase (NM) case, as-
suming no pole-zero cancelation, is constructed by adding
three zeros outside a unit circle to the system. From the

plot, it is clear that long filter does better in the recogni-
tion tests. However, long anti-causal part degrades the per-
formance because of the pre-echo. A short asymmetrical
length inverse filter is therefore generally preferred. Com-
paring the (definitely) non-minimum phase system result
with the original synthetic room impulse response, the for-
mer suffers more in original far-field simulation. The left-
most points on the plot correspond to using minimum possi-
ble anti-causal length (only to compensate for direct signal
delay). The severe degradation subject to the non-minimum
phase case for this filter shown indicates that non-minimum
phase compensation is needed. Though the result may be
circumstantial, room response in general has non-minimum
phase occurred only in the late reverberation region. There-
fore only moderate length of anti-causal part may be enough
for general use.

The general trend follows in real room recording results
shown in Figure 2. The exception is a significant differ-
ence in recognition rate using long 2048-tap filter. This sug-
gests that the discrepancy might come from non-stationarity
since results for shorter filters are hardly different. As also
shown in Figure 2, the solution derived via frequency do-
main approach gives comparable performances in all cases
for length-2048 filter. In Figure 3, the mean squared error
(MSE) between an ideal impulse and the equalized response
for the synthetic case shows that lower MSE values do not
entail better recognition. While equalization is good, pre-
echo has a far more negative impact. A comparison is
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Fig. 1. Recognition error rate (%) from synthetic room
reverberation for various filter length (Nw) combinations
for (a) synthetic impulse response (b) non-minimum phase
(NM) zeros added

given in Table 4 for length-1024 filter with anti-causal tap of
128, time-domain BWLS and an inverse filtering approach
called complex-smoothed inverse filtering taken from [1],
all calculated from the original synthetic impulse response.
This last algorithm avoids deep-notch inverting problem by
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Fig. 2. Recognition error rate (%) from real recording for
filter length (Nw) of 512, 1024 and 2048 in time (TLS-
513,1024,2048) and frequency domain (FLS-2048).

Method a-MMSE BWLS CplxSm
Error rate 8.92% 21.17% 22.77%

Table 4. Error rate comparison between time-domain
MMSE asymmetric inverse filter (a-MMSE), BWLS and the
complex-smoothed inverse filtering (CplxSm) on synthetic
room impulse response

smoothing in frequency domain. It aims for pleasant listen-
ing, avoiding artifacts which commonly come with compen-
sation of non-minimum phase zeros. As the results show,
this does not necessarily lead to good speech recognition
performance. Though, this may partly be because there is
not much problem with non-minimum phase in this test.
Also,the impulse response used here may not be as long
as the effective cases of large concert hall and auditorium
demonstrated in the paper.

4. CONCLUSION

We showed in this paper the comparative effects of reverber-
ation on speech recognition. A few different approaches to
arriving at an asymmetric-length non-causal linear FIR filter
and others have been presented. The recognition improve-
ment over far-field signal has been shown in both synthetic
and real room recordings. The experimental results encour-
age more consideration on speech recognizer oriented de-
sign of dereverberating algorithms.
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