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ABSTRACT

This paper addresses the problem of recognising speech in the
presence of a competing speech source. A novel two stage ap-
proach is described. A spectral representation is first divided into
a set of spectro-temporal fragments where each fragment is be-
lieved to be due to a single acoustic source. An unknown sub-
set of these will be due to the target speech source. The standard
ASR search is then extended to find the most likely combination
of speech model sequence and fragment subset. The technique is
tested with a fragment generation stage using pitch information to
locate harmonic energy components, and image processing tech-
niques to segment the inharmonic regions of the spectrogram. The
system achieves an accuracy of 65.1% on a 0 dB simultaneous con-
nected digit sequence task with cross-gender mixtures. Extension
of the technique to handle matched-gender utterances is discussed.

1. INTRODUCTION

Recognition of speech in the presence of other sound sources re-
mains a challenging problem. Specific solutions do exist but all
impose constraints. Some rely on the presence of multiple micro-
phones [1]. Others assume the noise ‘background’ has temporal
dynamics that are very different to those of speech [2]. Another
set of techniques attempts to directly model the combined speech
plus noise signal, but in order to keep the problem computationally
tractable invariably assumes some a priori knowledge of the struc-
ture of the noise sources [3]. None of these techniques work well
when applied to single microphone speech in general everyday lis-
tening conditions. And, they all fail badly in certain ‘pathological’
conditions, such as speech in the presence of other speakers - the
so-called ‘cocktail party’ condition [4].

An alternative approach is emerging that has been largely mo-
tivated by studies of the auditory system and its ability to form the
perception of separated sound sources given a mixed acoustic sig-
nal [5, 6, 7]. The computational modelling of this process, Com-
putational Auditory Scene Analysis (CASA), has led to systems
which attempt to separate sound signals by exploiting ‘primitive’
properties of the acoustic signal. Features such as harmonicity and
onset time are used to try and form partial descriptions of separate
sources by essentially clustering elements of the time-frequency
representation (time-frequency ‘pixels’) into larger units. It is only
possible to recover partial descriptions of the individual sources
as inevitably some time-frequency regions of each source will be
masked by other sources. However, recent work has shown that
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traditional speech recognition techniques can be adapted to handle
such ‘missing data’ [8]. Due to the large redundancy of the speech
signal, these missing data speech recognition systems can achieve
surprisingly good performance despite severe masking.

Although missing data techniques have met with success in a
range of conditions there exists an unsolved problem with the ap-
proach. The missing data theory describes what to do when you
know which spectro-temporal regions are masked, but it does not
say how the location of the masked regions can be estimated. At-
tempts to estimate the mask using primitive CASA have only suc-
ceeded under certain conditions. Indeed, it is well understood that
humans employ a mixture of primitive bottom-up processes and
top-down hypothesis-driven processes when perceptually organis-
ing acoustic mixtures containing complex signals such as speech
[5]. So, it would seem natural that knowledge of the speech signal
(i.e. the same type of knowledge employed by ASR systems) is
involved in the mask estimation itself. This is the motivation for
the speech fragment decoder (SFD) model illustrated in Figure 1
[9]. Rather than ‘first identify the speech regions, then use speech
models to recognise the speech,’ in the SFD model the identifica-
tion of the speech regions and the recognition proceed in parallel
and with access to a common set of speech models. In this model,
the role of primitive CASA is confined to that of identifying a set of
so-called ‘coherent’ spectro-temporal fragments (spectro-temporal
regions in which the energy is due to a single acoustic source). A
modified ASR-style decoder is then employed to simultaneously
label these fragments as foreground/background and find the cor-
rect word sequence to model the speech.
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Fig. 1. An overview of the speech fragment decoding system.
Bottom-up processes are employed to locate ‘coherent fragments’
and then a top-down search with access to speech models is
used to search for the most likely combination of fragment fore-
ground/background labelling and speech model sequence.
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Previously the decoder has been tested in conditions in which
fragment generation could be implemented using straightforward
techniques. For example, it has been tested using near station-
ary noise backgrounds with occasional impulsive noise intrusions
[9]. In the current work we study the case of speech mixed with
speech at 0 dB. For a number of reasons this task is a particu-
larly challenging - even for humans. The speech masker is highly
non-stationary and so cannot be removed using simple adaptation
schemes. The target and masker utterance have the same signal
level, which makes them highly confusable [10]. The utterances
are designed to start and end simultaneously so there is no lead or
lag time in which one speaker can be heard in isolation. The sig-
nals are monaural, so common multiple microphone blind source
separation techniques cannot be employed [1]. A connected digit
task is employed, so high level linguistic cues are also minimised
- both speakers are employing the same vocabulary and their is no
grammar to constrain the possible word sequences.

The structure of the remainder of the paper is as follows. Sec-
tion 2 gives a functional description of the operation of the speech
fragment decoder. For the theoretical development and implemen-
tation details see [9]. Section 3 describes the novel techniques in-
troduced in the current work to generate the fragments over which
the decoder searches. Experiments conducted with simultaneous
speakers uttering digits sequences are described in Section 4. In
Section 5 results are presented and discussed.

2. SPEECH FRAGMENT DECODING

Consider a time-frequency representation of a speech source in
the presence of one or more competing sound sources. In some
spectro-temporal regions the level of the speech energy will be rel-
atively undisturbed by the competing sources, in other regions the
speech energy will be masked by a more energetic source. Missing
data speech recognition systems exploit this fact to achieve robust
recognition performance in noisy conditions [8]. However, as part
of their input they need a binary ‘mask’ indicating in which re-
gions the speech is reliable and in which it is masked. In some
conditions such masks can be estimated using simple techniques
(e.g. stationary background estimation). However, it is hard to see
how masks can be readily generated for speech in the presence
highly non-stationary noise maskers such as a competing speaker.

In contrast to missing data techniques the speech fragment de-
coder does not require the foreground/background segmentation
to be performed a priori, rather it builds a description of this seg-
mentation as part of the recognition process. The decoder starts
with a set of coherent fragments - spectro-temporal regions that
are believed to be dominated by a single sound source. There
necessarily exists a unique subset of these fragments that forms a
complete description of the unmasked portion of the target source.
If the correct subset was known then recognition could proceed
using standard missing data techniques. As the correct subset is
not known, the decoder performs an algorithm that is equivalent
to having separately conducted a missing data decoding using the
mask generated by every possible subset of fragments, and then
selecting the overall most likely decoding. Exact techniques for
achieving this without a combinatorial explosion in the number of
hypotheses are described in [9]. As the fragment selection is ef-
fectively conducted in parallel with the word sequence search, the
foreground/background segmentation and the speech recognition
mutually support each other.

The success of the speech fragment decoding technique de-

pends heavily on the quality of the fragments being supplied as in-
put. If the input is under-segmented and the fragments are not co-
herent then energy from two sources appears in a single fragment
and that fragment cannot be correctly labelled as either foreground
or background. Alternatively, with over-segmentation, although
the fragments may be coherent some of the constraint imposed by
having a small number of fragments is lost. Furthermore, over-
segmentation can unnecessarily widen the search space which, de-
pending on the recognition task, may necessitate increased pruning
and hence result in decreased search accuracy.

3. FRAGMENT GENERATION

Fragment generation proceeds in two stages. The first stage identi-
fies and groups the harmonic energy regions of each source on the
basis of their fundamental frequency. This stage can proceed using
techniques that have been well-established in previous source sep-
aration systems [6, 11]. However, using knowledge of harmonic
energy alone renders the identification of unvoiced phonemes un-
reliable. So the second stage takes the remaining inharmonic in-
formation and fragments it into regions of high energy that appear
to be well separated in time and frequency.

3.1. Harmonic Region Extraction

The harmonic region extraction stage identifies spectro-temporal
regions that have a common fundamental frequency (pitch). It is
based on a recent autocorrelation method for robust detection of
multiple pitches within a mixture [12]. The signal, sampled at
16 KHz, is passed through a 64 channel gamma tone filter bank
spaced equally on an equivalent rectangular bandwidth (ERB) rate
scale with centre frequencies between 40Hz and 4000 Hz. The
signal is then framed using a 25 ms window with a 10 ms frame
shift. For each frame autocorrelations are computed within each
frequency channel. For low frequency channels the autocorrelation
is computed directly from the filter output. Since the harmonics
for high frequency channels are known to be generally unresolved,
the autocorrelation for these frequencies is computed from the en-
velope of the filter response. A summary autocorrelation is then
computed by summing the autocorrelation functions for the low
frequency channels. The lags at which the peaks in the summary
fall above an experimentally determined threshold are chosen as
initial candidates for the pitch(es) in that frame. The lags of the
dominant peaks in the autocorrelation function of each channel are
measured. If the channel lag matches within 5% of the candidates
from the summary, then that candidate, or candidates, is chosen as
the pitch estimate for that channel; if not, the channel is considered
unreliable and no estimate is produced. If there is more than one
matching estimate in a single channel, then the one that has the
highest amplitude is chosen.

The above process is performed on each frame to effectively
group channels across frequency if they share the same pitch. A
complete system would require a separate tracking stage to grow
fragments across time. The current work sidelines the pitch track-
ing problem by focusing on mixtures of male plus female speech
for which the pitches are well separated. In this condition the male
harmonic region and the female harmonic region can be estimated
directly by clustering the pitch values of the time-frequency el-
ements into a low frequency and a high frequency cluster. The
more general problem of dealing with same-gender mixtures is an
extension of the present work which is discussed in Section 5.
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3.2. Inharmonic Fragment Generation

The segmentation of the inharmonic energy exploits the fact that
most of the energy in a speech signal appears in concentrated time-
frequency regions. As a consequence, when multiple sources are
present, energy regions of the individual sources only partially
overlap, so high-energy features of the individual sources often
appear as separated peaks of energy. These peaked regions can be
segmented using an algorithm employing the watershed transform
(commonly employed in computer vision for segmenting gray scale
images [13]). Essentially the algorithm searches for intensity peaks
and troughs in the image then groups regions that fall between the
troughs. To avoid over-segmentation major troughs are empha-
sised and insignificant ones are removed. Hu and Wang [11] have
recently demonstrated the potential of similar image processing
techniques for segmenting auditory spectrograms.

After the watershed segmentation, inharmonic fragments that
start at the same time frame can be regrouped because sound ele-
ments that share a common onset time are likely to belong to the
same source. Grouping by common onset reduces the total number
different fragments occupying a single time frame which greatly
reduces the search space of the decoder (Figure 2).
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Fig. 2. Example of fragments generated from a mixture of male
and female speech. Top left, mixed speech; top right, harmonic
regions; bottom left, inharmonic fragments. The bottom right plot
shows the number of unique fragments found at each time frame
before common onset grouping (top) and after (bottom).

4. EXPERIMENTS

4.1. Test Data and Model Training

The system was tested using monaural mixtures of two simultane-
ous speakers (mixed gender) uttering sequences of digits mixed at
0 dB. The 1001 clean utterances from test set A of the Aurora 2
corpus were used to create the test data [14]. An end-point detec-
tion algorithm was employed to remove initial and final silences
[15]. The end-pointed utterances were then ordered by length and
each signal was paired with its neighbour to create 1000 pairs. Of
these, the 484 pairs which had mixed-gender were used to form the
test set. Mixtures were constructed by adding the signal pairs in
the time domain. The shorter of each pair was padded with zeros

(equally at either end) to match the size of the longer signal. The
average difference in length was 0.3% with only 35 pairs having a
difference of greater than 1%.

Acoustic vectors were formed by filtering with a 64 channel
gammatone filter bank with centre frequencies equally spaced on
an ERB scale from 50 Hz to 3850 Hz. The instantaneous Hilbert
envelope at the output of each filter was smoothed with a 1st order
filter (with an 8 ms time constant) and sampled at a frame rate of
10 ms. Cube root compression was then applied to the envelope
values.

Whole word gender dependent HMMs were trained using the
4220 utterances of each gender in the Aurora clean training set.
The HMMs had 16-states in a straight-through topology. Each
state was modelled with a mixture of 7 Gaussian distributions with
diagonal covariance matrices. A single state silence model was
constructed to model inter-digit pauses. When testing, either male
models or female models are employed depending on the gender
of the target utterance.

By comparing the time frequency representations of the un-
mixed signals it is possible to generate a mask of the spectro-
temporal regions of the mixture in which the target is undisturbed
by the masker. When missing data recognition is performed using
these ‘a priori’ masks the results shown in the first column of Ta-
ble 1 are obtained. This result represents the upper bound on what
is obtainable with perfect source/target segregation.

4.2. Employing Harmonic Regions Alone

The first experiment used standard missing data techniques to ex-
amine recognition performance using harmonic information alone.
The features in the spectro-temporal region dominated by the tar-
get speaker’s harmonic component are treated as reliable. The fea-
tures in the region dominated by the masker’s harmonic compo-
nent are masked. The observed masker energy in these regions is
as an upper bound for the target source energy. This constraint is
modelled using the missing data ‘bounded-marginalisation’ tech-
nique [8]. The contribution of inharmonic components is effec-
tively removed by appropriately marginalising the probability dis-
tributions when computing the HMM-state likelihoods (i.e. inte-
grating over all possible values of the inharmonic energy).

Experiments compared results using either harmonic regions
generated according to Section 3.1 (estimated pitch) or harmonic
regions generated using ‘a priori pitch’. The a priori pitch masks
were created by replacing the per frame pitch estimates employed
in Section 3.1 with estimates obtained by tracking the pitch in
the unmixed signals using Snack [16] (an open source version of
ESPS/waves+). The ‘a priori pitch’ masks results are an estimate
of the performance that could be gained by having an ideal pitch
estimation algorithm.

4.3. Adding Inharmonic Fragments

The second experiment was similar to the first except the inhar-
monic regions, rather than being ignored, were included as a set of
unlabelled fragments generated using the watershed algorithm de-
scribed in Section 3.2. The speech fragment decoding process was
employed to find the best target/masker labelling of these frag-
ments. There is extra information in the inharmonic regions so
the decoder should produce a better result than when using the
harmonic regions alone, as long as it is able to correctly identify
which fragments belong to the target source. As before, the system
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employed harmonic regions derived either from estimated pitches
or from ‘a priori’ pitches.

5. RESULTS AND DISCUSSION

The full set of experimental results are shown in Table 1. Results
are shown separately for both the male and female utterances. Us-
ing the harmonic region alone produces a recognition accuracy of
59.1% and 64.5% for female and male utterances respectively. The
results using a priori pitch suggest that these results could be in-
creased by an absolute 5% to 10% by improvements to the pitch
estimation algorithm. With the harmonic-only results as a base-
line, it can be seen that the use of the speech fragment decoder
to incorporate information from the inharmonic regions increases
overall recognition accuracy from 61.8% to 65.1%.

Ap Harm Harm+Inharm
Ap. Est. Ap. Est.

M 97.1 69.4 64.5 79.6 66.3
F 95.9 69.3 59.1 79.3 63.8

Overall 96.5 69.4 61.8 79.5 65.1

Table 1. Recognition accuracy for different sets of fragments: Ap
- a priori Masks, Harm - Harmonic regions, Harm+Inharm - Har-
monic regions plus inharmonic fragments. Results are reported for
both a priori pitch and estimated pitch harmonic regions. Results
for both the male M and female F utterances are recorded. Overall
is the average of M and F.

The modest improvement bought by the inclusion of the in-
harmonic regions is encouraging, but the final full-system result is
still a long way short of the a priori mask score of 96.5% which
indicates what could be achieved if the target and masker regions
were perfectly segmented. A large part of this difference may be
due to poor estimation of the harmonic regions and error intro-
duced by the naive clustering approach. Note, using an a priori
pitch estimate the full system recognition accuracy improves from
65.1% to 79.5%. However, even when using the a priori pitch esti-
mates some channels will not necessarily be assigned to the correct
source. For example when the female source has roughly double
the pitch of the male source the coincidence between autocorrela-
tion peaks caused by the two signals can make the dominant peak
appear to be due to a less energetic male source.

To put the overall recognition accuracy of 65.1% into perspec-
tive it may be compared to the performance of various connected
digit recognition systems that were evaluated using the Aurora cor-
pus at a special session of Eurospeech 2001. The evaluation em-
ployed the same connected digit data artificially mixed with a va-
riety of environmental noises – all of which were more stationary
than the speech maskers employed in the current study. Our cur-
rent result is closely comparable to the best of those reported for
systems designed to be trained on clean speech (e.g. [17]), which
is highly encouraging given the challenging nature of the speech
plus speech task.

Future work will aim to generalise the current system to deal
with matched gender mixtures for which the voiced regions of the
two speakers can not be separated by simple clustering. As the
pitch of each speaker varies smoothly, by tracking pitch estimates
across time, short pitch track segments can be located. By match-
ing these pitch segments to within channel pitch estimates, frag-

ments of the harmonic component of each source can be isolated.
These fragments, like the inharmonic fragments, would not have a
target/masker label attached but would be labelled during decoding
within the SFD framework.
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