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ABSTRACT

The paper proposes a context-dependent duration model and dis-
cusses its integration into a first-order hidden Markov model-based
speech recognizer. The duration model allows the application
of conditional duration probabilities that depend on the durations
of neighboring HMM states. This way, it is capable of penaliz-
ing or fully preventing unusual durational relations of succeed-
ing states. As the duration model is compiled into a dedicated
first-order model topology it can be applied in a single-pass 1-best
Viterbi decoder. In addition, this topology facilitates the integra-
tion of duration-dependent density functions. In experiments on
connected digit recognition we see a relative word error reduction
of about 16% with the proposed duration model and another 12%
due to duration-dependent densities.

1. INTRODUCTION

In ordinary first-order HMM-based speech recognizers, the prob-
ability score Ps(d) of staying in an HMM state s for exactly d
frames, independent of the acoustic observation, is given by

Ps(d) = (1.0 − ass) · ad−1
ss (1)

with ass representing the probability of a self-transition within s.
Thus, the state duration probabilities are modeled as geometric
distributions. It is well known, however, that these exponentially
decreasing functions are rather poor models for duration proba-
bilities. On the one hand, they are not capable of representing low
probabilities for very short durations and on the other hand, they do
not take any context durations or overall speaking rate into account
but rather model each duration independently. Several studies have
tried to overcome these obvious deficiencies by introducing more
refined models for state or phone durations [1, 3, 4, 5, 6, 7, 8].

The basic approach of [6, 7, 8] replaces the geometric du-
ration distributions with arbitrary probabilistic distribution func-
tions fs, such as Gaussian or gamma distributions. The overall
score ScoreH(d1, ...dN ) of a path through an HMM H of N states
s1...sN with durations d1...dN is then expressed as

ScoreH(d1, ...dN ) =
NY

i=1

fsi(di) (2)

Such models are often referred to as Hidden Semi-Markov
Models (HSMM). In case the distribution is discrete or in case it is
mapped to a discrete probability distribution, the resulting higher-
order model can be represented as a first-order model by expansion
of each state into a chain of substates, as depicted in Fig. 1.

Often, first-order HMMs that represent higher-order HMMs
through dedicated topologies are referred to as Expanded-State
Hidden Markov Models (ESHMM). In an ESHMM, duration prob-
abilities are modeled as discrete distributions and are stored in the
transition probabilities. Earlier approaches [4] of applying mini-
mum and maximum durations per HMM state are special cases of
ESHMM. We will refer to a state of the higher-order model as well
as to the set of substates that represent it as superstate.

Ps(2)
1.0−Ps(1)

Ps(1)

1.0−Ps(1)−Ps(2)
1.0−Ps(1)

1.0 − Ps(1)

Fig. 1. A superstate of an Expanded-State Hidden Markov Model

The reported performance improvements with HSMM and
ESHMM are only very small and rather disappointing. While pro-
viding a more accurate modeling of state durations, these models
lack the ability to estimate duration probabilities conditioned on
the neighboring states’ durations or the overall speaking rate.

The approach in [1] tries to incorporate the correlation of du-
rations within words by rescoring N-best lists according to train-
ed word-based phone duration relations. The reported absolute
improvement of 1% on Switchboard is notable, but the approach
raises many questions concerning word clustering, smoothing and
the treatment of unseen words. Povey [5] found it to be very hard
to tune and gained only very limited improvements. Other ap-
proaches, such as the one in [3], try to make use of speaking rate
estimates. Robust speaking rate estimates are best computed over
entire utterances, so that this approach too requires an expensive
N-best rescoring scheme. The measured marginal improvements
do not quite justify this effort. Furthermore, these approaches are
hardly applicable in online decoding scenarios.

Therefore, this study tries to develop a duration model that can
be integrated into a first-order model-based decoder and trainer
while at the same time allowing state duration probabilities to be
conditioned on the duration of neighboring states in order to penal-
ize unwanted durational behavior. As a side effect, we will see that
the resulting model topology enables a straightforward extension
to duration-dependent acoustic output distribution functions.

2. A BIGRAM EXPANDED STATE DURATION MODEL

The principal approach we propose extends the idea of state expan-
sion by expanding each HMM state into an even larger automaton,
capable of representing a durational bigram model. In this network
of rows of linearly connected substates of increasing length each
row of substates represents the corresponding superstate observed
for a certain number of time frames (see Fig.2). This represen-
tation encodes the superstate duration into each of its substates.
Hence, the transition probabilities are capable of representing ex-
act probabilities Ps(ds | ds−1) of staying in a state s for ds frames
given that the duration of the previous state was ds−1 (see Fig.3).
For now, we assume all substates of a superstate to share the same
output distribution function (full tying of substates).

In the detailed scheme we are following, the maximum depth
Ms up to which a state s is being expanded is either fixed (de-
noted later as Ms = n) or linearly dependent through some tuning
parameter α on its average duration.

Ms = �α · AverageDuration(s)� = �α/(1 − ass)� (3)
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Fig. 2. Context-dependent ESHMM (CDESHMM) superstate
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Fig. 3. CDESHMM superstate transitions (full connectivity)

A path through the N superstates of HMM H with durations
d1, ...dN is now scored with discrete transition probabilities con-
ditioned on the preceeding durations according to Eq.4.

ScoreH(d1, ...dN ) = Ps1(d1)
NY

i=2

Psi(di | di−1) (4)

Based on the assumption that neighboring durations are highly
correlated, this is a more appropriate probabilistic model than the
product over the unconditional duration probabilities of Eq.2.

In order to make sure they absorb exactly one feature frame,
the substates do not permit self-transitions. Only the Msth row
is optionally given a loopable state (one with a self-transition) in
order to enable this last row to also absorb observations of more
than Ms frames. Certainly, the additional degree of freedom that
comes along with the loopable substate in the last row also al-
lows unwanted state durations and can contribute to recognition
errors. The higher Ms and α, the less important these loopable
substates become and fully avoiding loopable states becomes an
option. Section 5 will show that even at a rather small α of 1.4, we
found it to be beneficial in terms of recognition accuracy to fully
sacrifice self-transitions, i.e. to limit the maximum duration.

3. PARAMETER REDUCTION, TYING AND
SMOOTHING

In the CDESHMM scheme as proposed in the previous paragraph,
a superstate s is expanded into Ms distinct substate paths of in-
creasing length, with each path having distinct exit transition prob-
abilities into the Ms+1 entry states of the following superstate.
This computes to Ms ·Ms+1 transition probabilities between each
two superstates s and s + 1. These transition probabilities need
to be estimated robustly. The following paragraphs deal with the
problem of reducing the number of transition probabilities for rea-
sons of robustness and model size reduction.

3.1. Merging of substate rows of similar length

The merging of rows of similar length (similar duration) is an obvi-
ous procedure for reducing the number of transition parameters as
well as the number of substates. In detail, what we experimented
with is a scheme for merging all the rows of length 4 and 5, those
of length 6,7 and 8, those of length 9,10,11 and 12, and so forth
within all superstates s. It is depicted on the left hand side of Fig.4.

Fig. 4. Merged rows of similar duration (left), additional merging
of exit states (right)

Expecially for large maximum depths Ms, this leads to a re-
markable reduction of substates and transition probabilities. The
transition probabilities in the exit states now represent the prob-
ability of the following duration being in some range from m to
m̂ given the exact duration of the current state. This can be re-
garded as a means of tying transition probabilities for the sake of
robustness as well as model compression.

An even stronger tying of transition probabilities can be
achieved by not only reducing the number of entry substates but
by similarly reducing the number of exit substates. The right hand
side of Fig.4 shows this scheme. The transitions between super-
states now represent the probability of the following duration be-
ing in some range from m to m̂ given that the current superstate
duration is within some range n to n̂. While further reducing the
number of transition probabilities this procedure does not provide
an additional reduction of required substates.

3.2. Reduced superstate connectivity

In the basic CDESHMM framework, decoding paths can proceed
from an exit substate into each of the following superstate’s en-
try substates. However, we have an idea (some prior knowledge)
of which transition structure we want the model to learn. It is a
smooth durational behavior with short durations following short
durations and longer durations following longer durations.

Therefore, for the purpose of reduced superstate connectivity,
we impose this topology by only allowing transitions between exit
and entry substates, the duration of which (possibly each normal-
ized by the average duration) is similar. Fig.5 shows the thinned
out transition structure between two superstates, with the mean du-
ration of the first being somewhat larger than that of the second.

Fig. 5. Sparse superstate connectivity

I - 422

➡ ➡



Alternatively, we experimented with a more data-driven
scheme. Similarly to an approach in [9] for mixture weight re-
moval, we first permit all transitions and then gradually removed
those that turned out to be taken with very low probability dur-
ing parameter estimation. This, however, performed worse than
the less expensive method described above that imposes a sparse
transition structure from the start.

3.3. Transition smoothing

During HMM parameter estimation, probabilities asŝ of stepping
from state s to state ŝ are gained from dividing γsŝ, the number
of times the transition is being taken, by Γs, the total number of
times (frames) that state s is being visited. For high numbers of γsŝ

and Γs this is known to be a robust estimate. For lower numbers
smoothing schemes such as those well known from statistical lan-
guage modeling [2] can yield more robust estimates. In this study,
we did not apply any smoothing of transition probabilities but in-
stead put a focus on procedures as described above for effectively
reducing the number of transition probabilities and the necessity
for smoothing. This approach was motivated by the observation
that strongly constraining the superstate transitions, as outlined in
3.2, turned out to be beneficial in terms of test data performance.

4. DURATION-DEPENDENT DENSITY FUNCTIONS

As stated before, the CDESHMM framework encodes the exact
superstate duration into each of its substates. This way, it al-
lows the straightforward integration of duration-dependent den-
sity functions for modeling the distribution of the acoustic ob-
servations. This could either be done implicitly by augmenting
the acoustic feature vector with the current state duration or ex-
plicitely by relaxing the constraint of all substates of a superstate
to share a single distribution function. For now, we evaluated dif-
ferent schemes for state clustering, as depicted in Fig. 6.
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2a) vertical clustering

1b) horizontal + vertical 2b) vertical + cluster of short rows

1a) horizontal clustering

Fig. 6. Different types of substate clustering

In the approaches 1a and 2a, the substates of each superstate
are divided into ns classes where ns depends on the amount of
training data available for superstate s. In 1a, the clusters are ori-
ented horizontally, resulting in different pdfs for different ranges
of duration. In 2a, the state clustering is relaxed in the vertical
direction, allowing a more accurate modeling of the temporal pro-
gression (trajectory) of the acoustic observation within a super-
state. Scheme 1b starts off from the clustering in 1a and in ad-
dition relaxes the clustering of rows which receive a particularly
large amount of training data. The approach 2b starts off from
2a and merges the rows of durations below ns into a new dedi-
cated cluster. The motivation is that with the number of substates

being below ns, these rows cannot make use of all introduced clus-
ter pdfs and possibly rather harm the associated distributions than
contribute to their robust estimation.

5. EXPERIMENT AND RESULTS

Experimental evaluations were carried out on whole word mod-
els for speaker-independent American English digit recognition.
Training and test data consist of continuously spoken digit strings
of varying length uttered in moving and stationary cars. Acous-
tic features are 11 MFCC coefficients transformed through LDA.
The baseline HMMs have linear topology with 10 states each and
tied-mixture probabilistic distribution functions.

Word error rates (WERs) achieved with CDESHMM in differ-
ent configurations can be found in Table 1. Also, the table displays
the baseline without state expansion and the best performance we
managed to come up with in the context-independent ESHMM
scheme (Fig.1). With a self-loop in each Msth row, we see a small
improvement from 3.55% down to a WER of 3.3% (at best) on the
training data and similar relative improvements on the test data.
When fully refraining from using loopable states, we see a very
different and much more interesting trend. With an overly small
maximum duration of Ms = 5 or α = 1.2, we see a dramatic in-
crease in WER on the training data, but still a small improvement
on the test data. Even at the intermediate configuration of around
α = 1.6, we observe a marginal performance degradation on the
training data but see a 14% relative word error reduction over the
baseline on the test data. With a deep state expansion (α = 2.0
or Ms ≥ 8), we observe that removing self-loops is beneficial
on both training and test data. Overall, refraining from having
loopable states in the last row strongly constrains the models with
a very positive effect on generalization. Hence, the following ex-
periments do only make use of non-loopable substates.

configuration with self-loops without self-loops
av. # of training test training test
substs. WER WER WER WER

baseline 3.55 4.79 - -
ESHMM 3.51 4.71 3.23 4.49

fixed number of substate rows per state
Ms = 5 15 3.34 4.52 5.52 4.32
Ms = 6 21 3.34 4.53 3.96 4.23
Ms = 7 28 3.35 4.57 3.39 4.22
Ms = 8 36 3.37 4.63 3.26 4.25
Ms = 9 45 3.39 4.68 3.24 4.33

number of substate rows relative to average duration
α = 1.2 12.0 3.34 4.55 7.49 4.65
α = 1.4 16.2 3.31 4.52 4.68 4.27
α = 1.6 21.3 3.30 4.52 3.72 4.12
α = 1.8 26.9 3.35 4.59 3.41 4.16
α = 2.0 33.4 3.37 4.66 3.28 4.20

Table 1. Word error rates [%] with full superstate connectivity

Table 2 shows the measured recognition performance follow-
ing the different strategies of substate merging as discussed in 3.1.
What we see is that it hardly has an impact on performance while it
effectively reduces model sizes. The table lists the average number
of substates per superstate and of connections between superstates.

In Table 3, we see word error rates measured with different
degrees of superstate connectivity as discussed in 3.2. There is a
obvious improvement through constraining the possible superstate
transitions. When only allowing connections of rows of similar
length we observe a negative impact from a too sparse connectiv-
ity. In case of normalizing the durations by the superstates’ aver-
age durations and only allowing transitions between rows of sim-
ilar normalized length, the very sparse connectivity achieves best
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avrg. # of avrg. # of trng. test
configuration substates connects. WER WER
α = 1.6, as in Tab.1 21.3 33.5 3.72 4.12
acc. to left Fig.4 15.2 29.3 3.44 4.21
acc. to right Fig.4 15.2 19.6 3.43 4.20
α = 1.8, as in Tab.1 26.9 43.0 3.41 4.16
acc. to left Fig.4 18.4 37.3 3.22 4.18
acc. to right Fig.4 18.4 23.0 3.23 4.18

Table 2. The impact of substate merging

test data performance. Interesting to see is that even the training
data performance gains from strongly limiting the valid transitions.

avrg. # of trng. test avrg. # of trng. test
connections WER WER connections WER WER

connection of substate rows of similar length
Ms = 6 Ms = 7

36 (full) 3.96 4.23 49 (full) 3.39 4.22
19 3.75 4.10 24 3.23 4.12
16 3.70 4.05 19 3.23 4.05
11 3.40 4.47 13 3.23 4.43

connection of substate rows of similar normalized length
α = 1.6 α = 1.8

33.5 (full) 3.72 4.12 43.0 (full) 3.41 4.16
17.1 3.52 4.09 20.5 3.28 4.19
14.0 3.48 4.07 16.5 3.24 4.04
10.4 3.41 4.04 11.9 3.25 4.02

Table 3. Different degrees of superstate connectivity

With the configuration of narrow connectivity based on nor-
malized durations, we have a 16% relative WER reduction over the
baseline (without CDESHMM) as depicted in Table 1. It should be
noted that this improvement is purely obtained through the modi-
fications of the duration model.

Finally, Table 4 lists WERs achieved starting from the best set
up of Table 3 and moderately relaxing the substate tying.

avrg. # of trng. test avrg. # of trng. test
clusters WER WER clusters WER WER

method 1a method 2a
3.3 3.06 3.68 3.2 3.20 3.71
4.0 3.04 3.54 3.9 3.19 3.63
4.7 3.08 3.62 4.8 3.35 3.69

method 1b method 2b
3.3 3.08 3.68 3.1 3.41 3.86
5.4 3.03 3.60 5.4 3.17 3.79
7.9 3.01 3.62 6.5 3.13 3.88

Table 4. Different methods and degrees of substate tying based on
the α = 1.8 and sparse connect. set up of Table 3 (WER 4.02%)

All proposed methods do yield some additional error reduc-
tion with the purely horizontal tying (1a) being the most effective
configuration. In its best set up it contributes another 12% relative
WER improvement. It is probably due to the large number of 10
(super-)states per digit HMM, that the feature stream is rather sta-
tionary within a state and that there is only minor improvement in
the vertical clustering schemes.

Overall, the CDESHMM framework achieves a WER reduc-
tion from 4.79% to 3.54% which is a relative reduction of 26%.

Run-time and memory consumption

Computationally, CDESHMM are more demanding than or-
dinary HMMs. However, run-time benefits significantly from
sparse superstate connectivity. Furthermore, the symmetric,
strongly tied and loop-free internal superstate structure potentiates
very efficient dedicated implementations. For now, all reported
experiments were conducted using an untuned single-pass beam-
search decoder with a fixed beam-width that only causes little
pruning error. In this configuration, time and memory consump-
tion increases with the proposed framework, but this increase is
not as severe as one might expect. Decoding in the best set up of
Table 4 (3.54% WER), for example, takes about 1.7 times as long
as in the baseline set up without CDESHMM.

Duration probability scaling

In large vocabulary continuous speech recognition (LVCSR),
it is common practice to weight language model scores against
those derived from the acoustic model by a (well-tuned) language
model scaling factor to compensate for different model quality
and range. A duration model scaling factor can be introduced with
a similar motivation [7]. Having a better duration model should
allow a higher weighting. In this study though, no duration model
scaling factor has been applied, i.e. it has always been 1.

6. CONCLUSION

The paper proposed and evaluated a highly constrained dura-
tion model as well as its integration into a standard first-order
HMM-based speech recognizer. In the proposed model, the time-
warping ability of HMMs which is usually realized through loop-
able states is replaced by a context-duration dependent bigram
model which effectively limits the durational characteristics of
valid paths through the HMMs. The model achieves best perfor-
mance in a configuration free of self-loops and with thinned out su-
perstate connectivity. In experiments on digit recognition it yields
a 16% relative word error reduction. Combined with duration-
dependent probabilistic distribution functions the relative improve-
ment amounts to 26%. Future work will focus on higher order du-
rational models than just bigrams, on augmenting the probabilistic
distribution functions with the duration feature as well as on mak-
ing effective use of the proposed framework in LVCSR.
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