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ABSTRACT 

In this paper, a new microphone array speech recognition system 

in which the array processor and the speech recognizer are 

closely coupled is studied. The system includes a Generalized 

Sidelobe Canceller (GSC) beamformer followed by a recognizer 

with Vector Taylor Series (VTS) compensation. The GSC 

beamformer provides two outputs, allowing more information to 

be used in the recognizer. One is the enhanced target speech 

output, the other is the reference noise output. VTS is used to 

compensate the effect of the  residual noise in the GSC speech 

output, utilizing the GSC reference noise output. The 

compensation is done in a Minimum Mean Square Error (MMSE) 

sense. Moreover, an iteration procedure using Expectation-

Maximization (EM) algorithm is developed to refine the 

compensation parameters. Experimental results on MONC 

database showed that the new system significantly improved the 

speech recognition performance in the overlapping speech 

situations.

1. INTRODUCTION 

Meetings present an important application domain for speech 

recognition technologies. However, when there are multiple 

concurrent speakers, the performance of speech recognizers is 

seriously degraded due to the overlapping speech. With their 

ability to provide directional discrimination, microphone arrays 

offer a potential solution to the problem of recognizing 

overlapping speech in the meeting environment [1][2]. 

Various microphone array-based speech processing 

methods have been studied, mainly for suppressing interfering 

signals to enhance the SNR of target signals [3-6]. Examples 

include broadband beam pattern synthesis [4], adaptive 

beamforming [5] and post-filtering [6], etc. Note that when used 

for speech recognition, these methods usually generate the 

enhanced target signal as a single output, which then gets treated 

as a single input to the recognizer. The array processor and the 

speech recognizer are loosely coupled. The only communication 

between them is through the signal output by the array processor. 

Other useful environmental information that can be provided by 

the multi-microphone array processor is ignored. In this way, we 

believe, the recognition performance of the system as a whole is 

limited. 

In this paper, a new microphone array speech recognition 

system in which the array processor and the speech recognizer 

are closely coupled is studied, as shown in Fig. 1. Specifically, 

we consider the integration of the Generalized Sidelobe 

Canceller (GSC) adaptive beamforming and Vector Taylor 

Series (VTS) model-based noise compensation. GSC is widely 

used in microphone array system to suppress interferences 

adaptively [5]. VTS is a model-based compensation method 

developed to improve speech recognition performance in noisy 

environments for mono-microphone situations [7-9]. The 

proposed system includes a GSC beamformer followed by a 

recognizer with VTS compensation. Remarkably, here the GSC 

beamformer provides two outputs, allowing more information to 

be used in the recognizer. One is the enhanced target speech 

output, the other is the reference noise output. VTS is used to 

compensate the effect of the residual noise in the GSC speech 

output, utilizing the GSC reference noise output. Moreover, an 

iteration procedure using Expectation-Maximization (EM) 

algorithm was developed to refine the compensation parameters. 

The new system was tested on the Multi-channel Overlapping 

Numbers Corpus (MONC) database [10]. Experimental results 

showed that the new system improved the speech recognition 

performance in the overlapping speech situations. 

2. MICROPHONE ARRAY SIGNAL PROCESSING 

AND RESIDUAL NOISE COMPENSATION 

2.1 Microphone array signal processing with GSC 

The array processor using using GSC adaptive beamforming is 

shown in Fig. 1. The GSC uses the configuration proposed in [5]. 

It includes a fixed beamformer (FBF), a multi-input adaptive 

filter (MIAF) and a blocking matrix (BM). The FBF enhances 

the desired speech signal; it can be designed as a delay-and-sum 

beamformer. The BM blocks the desired speech signal and 

passes the speech from other competing speakers. So in the BM 

output, the interfering signal is dominant. The MIAF uses the 

Normalized Least Mean Square (NLMS) algorithm to adapt the 

coefficients of a set of transversal FIR filterers. The desired 

speech output is extracted by subtracting the output of MIAF, 

r n , which we called the reference noise output, from the FBF 

output, d n .
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Fig. 1 Closely Coupled Array Processor and Speech Recognizer 

2.2 Model-based residual noise compensation 

2.2.1 A model for the GSC outputs 

Although the SNR of the GSC speech output, y n , is 

increased comparing with the microphone input, there is still 

some residual noise in y n  due to the convergence error of the 

multi-input adaptive filter. We formulate the relation between 

the desired clean speech signal s n , GSC speech output 

y n  and the residual noise e n  as follows: 

.y n s n e n  (1) 

Furthermore, we assume that the relation between the residual 

noise e n  and the GSC reference noise output r n  could be 

expressed as 

,e n r n h n  (2) 

where h n  stands for a linear filter which takes into account 

the amplitude and phase difference between r n  and e n .

The relations in equations (1) and (2) can be represented using 

the power spectral density (PSD) as 

2

,

Y S E

S H R
 (3) 

where Y , S , E , R  and 
2

H  are the 

PSD of y n , s n , e n , r n  and h n  respectively. 

Taking natural logarithms on equation (3), we get 

2

log log

log log 1 .
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 (4) 

For brevity, we use by , bs , br  and bh  for log Y ,

log S , log R  and 
2

log H  respectively. After 

some algebraic manipulation, we can get the following equation 

in the logarithmic filter bank energies (log-FBE) domain: 

log 1 exp .b b b b by s r h s  (5) 

2.2.2 Vector Taylor Series (VTS) model-based residual 

noise compensation 
By applying a first order Taylor series expansion around 

0, ,s r bh , we can approximate equation (5) with  

0

0

log 1 exp

,

b s r b s

b s b r b b
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where 

0

1
.
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b r b s
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 (7) 

The clean speech bs  is modeled as a K-Gaussian mixture (we 

use K = 64): 

, ,

1

; , ,
K

b k b s k s k

k

p s P N s  (8) 

where k  is the k-th Gaussian distribution with mean ,s k  and 

covariance matrix ,s k , and kP  is the a priori probability 

of 
k

. The noise 
br  is modeled by single Gaussian 

; ,b r rN r , and the noise is assumed to be statistically 

independent with the clean speech. Then through the relations in 

equation (6), the noisy GSC output by  can also be modeled as a 

K-Gaussian mixture, and the mean and covariance of its k-th 

Gaussian distribution can be shown as 

0

, , ,log 1 expy k s k r b s kh  (9) 

and 

, , .
TT

y k s k rA A I A I A  (10) 

Because the residual noise is non-stationary in the case of  

overlapping speech, the compensation is done frame by frame. 

For the t-th frame, the noise mean and covariance are estimated 

as
1

0

1 L

r b
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 (11) 

and 
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where L  is the number of history frames used to make the 

estimation. After model compensation, the clean speech can be 

estimated based on the minimum mean square error (MMSE) 

criterion. Thus, we have 
0

0

,
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ˆ , , , ,
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b b b b r r b

K
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 (13) 

In the second part of the above equation, an approximation 

similar to that used in [9] is adopted to make the MMSE 

estimation efficiently. The posteriori probabilities k bP y t

are estimated using the compensated model for by t :
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2.2.3 EM algorithm for 0

bh

The optimal estimation of the linear filter between the residual 

noise and the reference noise signal can be obtained by the 

maximum likelihood criterion. Since it is difficult to obtain the 

ML estimate directly, EM algorithm is used to iteratively update 

the parameter values. The auxiliary function 
0,b bQ h h  for the 

EM algorithm is defined as 

0 0, log , , ,b b b k b b bQ h h E p y h y h  (15) 

where 
0

bh  is the current estimate of the linear filter. The 
bh  that 

maximizes the auxiliary function can be found as: 
1
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where 
1 TT

k kW I A A A I A  (17) 

and 
1
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 .
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h y t r t I A y t

r t
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In equation (16), T is the number of the log-FBE feature vectors 

used to obtain the ML estimation of bh . Applying the 

simplification used in [9], we can approximate equation (16) 

with 

0 0 0

1 1

1ˆ , , , .
T K

b b k b b b b b k
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h h P y t h h y t r t
T

 (19) 
0ˆ
bh  is then used in the next EM iteration as the current estimate  

Fig. 2 Meeting room configuration for MONC [10] 

of bh . This iteration proceeds until convergence.  

2.2.4 Discussion 
In [2], a post-filter after the beamforming stage is used to reduce 

the residual noise in the beamformer output. This post-filtering 

approach uses an assumed noise field coherence model to design 

the Wiener post-filter. However, in the assumed noise coherence 

model, there have parameters that are not normally known in 

advance. In practice, these parameters are hand-adjusted to 

achieve a compromise between diffuse and localized noise 

reduction [2]. This is not convenient for the deployment of a 

microphone array in different environment settings. On the other 

hand, the compensation parameters used in our model-based 

residual noise compensation algorithm can be learned 

automatically from data through the EM algorithm, and avoid 

the hand-adjustments. This feature is desirable for the use of our 

system in diverse environments. 

3. EXPERIMENTAL RESULTS 

The proposed new microphone array speech recognition system 

was tested on the Multi-channel Overlapping Numbers Corpus 

(MONC) database. The MONC is based on the Numbers Corpus 

(telephone quality speech, 30-word vocabulary) prepared by the 

Center for Spoken Language Understanding at the Oregon 

Graduate Institute [10]. The meeting room configuration for the 

MONC data acquisition is shown in Fig. 2. The loudspeakers 

simulate the presence of the desired speaker (S1) and the two 

competing speakers (S2 and S3) in a realistic meeting scenario. 

A circular microphone array comprising eight equally spaced 

microphones is placed in the middle of a round table. An 

additional microphone is placed at the center of the table. A 

lapel microphone is attached to each loudspeaker. The same type 

omni-directional microphones are used in all locations. The 

circular table is located at one end of a moderately reverberant, 

8.2m 3.6m 2.4m , rectangular room. The dominant non-

speech noise is produced by a PC located at the opposite end of 

the room. Three recognition tasks based on the MONC database 

were carried out in our work: 

Task-S1: only the desired speaker S1 is active, no 

overlapping speech 
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Task-S1S2: the desired speaker S1 with one competing 

speaker S2 active (resulting in approximately 0dB SNR at 

the centre table-top microphone location) 

Task-S1S2S3: the desired speaker S1 with two competing 

speakers S2 and S3 active (resulting in approximately -3dB 

SNR at the centre location) 

Our speech recognition system is based on continuous-

density hidden Markov models (CHMM) with 363 states and 14 

Gaussians per state. The 45-dimensional feature vector is formed 

by 14 MFCC’s, energy plus their first and second order 

differentials. The recognition system was trained on the clean 

training set from the original Numbers Corpus. The baseline 

system achieved a Word Error Rate (WER) of 6.19% on the 

clean test set from the original Numbers Corpus. 

Task S1 S1S2 S1S2S3

Lapel Microphone 8.32  47.74  50.28 

Centre Microphone 13.16 67.31  83.24 

GSC 13.02 22.89  32.15 

GSC + Model-based 

Compensation 
12.47 19.44  23.27 

GSC + Model-based 

Compensation + EM  
9.02  16.92  22.00 

Table 1. Word Error Rate (WER) results (%) 

The WER results of the speech recognition experiments are 

listed in Table 1. In this table, the “Lapel Microphone” row lists 

WER results for recordings from the desired speaker S1’s lapel 

microphone, and the “Centre Microphone” row gives the results 

for the recordings from the centre table-top microphone. It is 

clear from these two rows of results that the speech recognition 

performance becomes seriously degraded when there are several 

concurrent competing speakers. Even when the lapel microphone 

is placed very near the desired speaker, the problem remains. 

The “GSC” row represents the experiment using the microphone 

array’s GSC speech output, y . It is shown that microphone 

array signal processing, such as GSC, improves the recognition 

performance for overlapping speech, as expected.  

The performance was further improved when model-based 

residual noise compensation was done. In our experiments of 

model-based compensation, the number of history frames ( L )

used to estimate the parameters of the reference noise  was set to 

10. Because of the non-stationary nature of overlapping speech, 

the length of history frames could not be too large. While 10 

history frames allowed for an accurate estimation of the mean 

vector of the reference noise, the accuracy in the estimation of 

the covariance matrix was very poor. So we only applied mean 

compensation and left the covariance matrix unchanged. Using 

this kind of model-based compensation for the residual noise in 

the GSC speech output, we have resulted in a comparable 

performance with those reported by Moore and McCowan in [2], 

as shown in the fifth row. In this first set of compensation 

experiments, the linear filter between the residual noise in y

and the reference noise was set a priori and remained unchanged 

in the subsequent compensation procedure.  

Applying the EM iteration procedure proposed in section 

2.2.3 for the optimal estimation of 
0

bh  resulted in further 

performance improvements, as the last row of Table 1 shows. 

Because we use all the frames in one utterance for the EM 

parameter estimation, multiple passes of compensation are 

performed for this mode after the whole sentence is recorded.   

4. CONCLUSIONS 

In this paper, a new microphone array speech recognition system 

in which the array processor and the speech recognizer are 

closely coupled is studied. The system includes a GSC 

beamformer followed by a recognizer with VTS compensation. 

VTS compensation is performed in the log-FBE domain for the 

filtering of the residual noise in the GSC speech output, utilizing 

the GSC reference noise output.  This approach does not require 

the a priori knowledge of the noise field coherence model, and 

can be used to do on-line compensation conveniently in different 

environmental settings. The compensation is done in a MMSE 

sense. Moreover, an iteration procedure using EM algorithm is 

developed to refine the compensation parameters. Experimental 

results on MONC database showed that the new system 

significantly improved the speech recognition performance in the 

overlapping speech situations. 
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