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ABSTRACT

In this paper, we propose a novel method for speech rate 

estimation without requiring automatic speech recognition. It 

extends the methods of spectral subband correlation by including 

temporal correlation and the use of selecting prominent spectral 

subbands for correlation. Further more, to address some of the 

practical issues in previously published methods, we introduce 

some novel components into the algorithm such as the use of 

pitch confidence, magnifying window, relative peak measure 

and relative threshold. By selecting the parameters and 

thresholds from realistic development sets, this method achieves 

a 0.972 correlation coefficient on syllable number estimation 

and a 0.706 correlation on speech rate estimation. This result is 

about 6.9% improvement than current best single estimator and 

3.5% improvement than current multi-estimator evaluated on the 

same switchboard database. 

1. INTRODUCTION 

Speech is a crucial component in human computer interaction. 

While tremendous progress has been made in automatic speech 

recognition, speech transcription -- which is the output of 

automatic speech recognition -- is far from providing all the 

information that one could retrieve from speech. For example, 

intonation, stress, timing, rhythm, and rate of speech all carry 

important information in speech and are crucial in speech 

perception. Inclusion of such information can facilitate better 

machine recognition and understanding of speech. Speech rate is 

one such key attribute. In this paper, we propose an algorithm 

for speech rate estimation. 

1.1. Why rate of speech?  

Speech rate has been initially investigated in the context acoustic 

modeling of speech recognition. It is apparent that the accuracy 

of a speech recognition system is severely affected when there 

are mismatches between the training and testing conditions.  

There are many possible factors causing these mismatches and 

speech rate is one of them [1]. Specifically, for better adapting to 

fast or slow speech, there has to be an estimation of speech rate. 

Only with this estimation could one select appropriate pre-

trained acoustic models or adaptively set transition probabilities 

of the HMMs [4][5]. 

In recent years, with increasing interest in spontaneous speech 

recognition and interpretation, the role of speech rate estimates 

has become even more important. Research has found that local 

speech rate correlates with discourse structure. For example, 

global analysis of the discourse structure in paragraphs and 

clauses reveals that for each of the speakers the average syllable 

duration of the first run of a paragraph is longer than the overall 

mean value per speaker in more than 60 % of the cases [3]. 

Local speech rate also plays an important role in the context of 

sentence boundary detection and disfluency detection. It has 

been suggested that people tend to have longer syllable duration, 

or say slower local speaking rate, at those events [6][7]. Speech 

rate also correlates with prosodic prominence. Rate of speech 

detection and normalization has been found to be necessary in 

solving such problems [8]. 

1.2. How to measure speech rate? 

It is quite natural for humans to use the term "fast", "normal", 

"slow" to describe speech rate. This classification has been 

applied in applications such as acoustic model selection [9] and 

HMM normalization [15]. However, this sort of classification is 

in itself fuzzy and needs humans to transcribe or manipulate. 

Practically, this classification can not be directly conveyed in the 

acoustic signal. So researchers in this area have adopted an 

intermediate quantitative measure of speech.  

In most of the cases, speech rate is measured by counting 

phonetic elements per second. Words, syllables [9], stressed 

syllables, phonemes [10] are all possible candidates. However, it 

has been observed that humans do not follow strictly or 

consistently use these phonetic elements while control their 

speaking rate [11]. In some studies, the phone duration 

percentile, a comparison of measured versus expected phone 

duration, is shown to be robust with respect to lexical content 

and consistent with previous findings about the statistics of both 

long-term and short-term speech rate [11]. But for this method, 

the expected phone duration model can be well modeled only in 

very limited cases. For example, it cannot model large number 

of speakers or male and female speakers simultaneously. 

Evidence from reiterative speech study [16] supports syllable to 

be a good estimate of speech rhythm, which is a similar measure 

to speech rate. Syllable is defined as a combination of 

elementary sounds uttered together with a single effort or 

impulse of the voice. Intuitively, syllables, by this definition, 

should have quite an even distribution under normal speed 

speech and their rate could be changed as a result of speech rate 

change. So it is used widely among speech rate researchers [6][9] 

[11]. In this work, we use syllable number per second as a 

measure of speech rate. 

1.3. Previous work in speech rate estimation 
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1.3.1. With or without ASR? 

Using automatic speech recognition to retrieve duration 

information about phonetic elements is straight forward. It is 

easy to get a phonetic alignment during speech recognition 

decoding and use this alignment timing information as a measure 

of speech rate [10]. It works well when speech recognition is 

reliable. But in the context of spontaneous speech, speech 

recognition is far from mature to robustly and precisely estimate 

these parameters. To address this issue at least partially, 

supervised alignment has been proposed. In cases where 

transcription is available, forced alignment can be used to 

provide better speech unit estimate. This method gives much 

more accuracy and has been successfully used in research [6][7]. 

However, such is not the case in the problem we are targeting in 

this work.  

Moreover, one intended use of speech rate is to facilitate robust 

ASR in terms of appropriate model normalization and adaptation 

techniques. It is implied that speech rate estimation serves like a 

front end for speech recognition for a number of applications. 

Using speech recognition itself to address this problem is hence 

logically unsuitable. So it is quite natural to use the acoustic 

signal directly to study speech rate. 

1.3.2. Acoustic study of speech rate 

One classical way to get syllable count is through a full band 

spectrum/energy analysis and measures the dominant peak of the 

long-term envelope [13]. This however results in a lot of noise in 

the final curve and hence it is difficult to get syllable count 

robustly. This fact is apparent in Fig 1(d). The sample speech 

"some form" (from Switchboard) should only have 2 syllables, 

but (d) shows at least 4 dominant peaks. The results are hence 

not satisfactory.

Figure 1. Sample speech "SOME FORM" (from switchboard) 

a) speech waveform b) wideband spectrum c) correlation 

envelope(approach in this paper) d) wideband energy envelope 

As an alternate approach to the same problem, the first spectral 

moment of the broad-band energy envelope has been used as a 

speech rate measure [12]. While this method provided improved 

performance with conversational speech, it was however shown, 

using a one hour subset of the manually transcribed Switchboard 

data, the correlation between transcribed syllable rate and 

experiment rate was only about 0.4 (when both were measured 

over between-pause spurts) [12].  

These two approaches assume that the wide-band energy peak as 

a valid representation for speech rate measure. A critical 

question then is how much information is lost or distorted in this 

process of using the wide-band energy curve, a lower dimension 

abstraction of the speech waveform. Specifically, are these 

losses and distortion crucial? From these aforementioned results, 

and supported by the example in Fig 1(d), the answer seems that 

this loss is indeed critical. For instance, the formant structures 

are lost in the wide band energy representation and this feature is 

crucial in fast speech syllable identification.  

In [9], Morgan & Fosler-Lussier developed a sub-band based 

module that computes a trajectory that is the average product 

over all pairs of compressed sub-band energy trajectories. That 

is, if xi(n) is the compressed energy envelope of the ith spectral 

band, a new trajectory y(n) is defined as: 
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Where N is the number of bands, M=N(N-1)/2 is the number of 

unique pairs. By this method alone, correlation coefficients 

above 0.6 were achieved. Furthermore, it was shown in [9] that 

the performance would boost to 0.673 if multiple estimators 

were combined (wideband energy peak count, spectral moment 

count). It is apparent that this method addresses the formant 

structures we discussed earlier. By introducing a band wise 

correlation in the spectral domain, the syllable peak in the 

correlation curve gets boosted. But on the other hand, this 

algorithm does not address problems related to smoothness in 

the temporal domain.  

The following sections discuss our approach. Our algorithm will 

generate a correlation envelope as shown in Fig 1(c).  

2. FURTHER SPECIFIC ISSUES AND SOLUTIONS 

In addition to the above-mentioned problem, there are several 

further issues that need to be tackled in designing a good speech 

rate estimator. Many of these are not well addressed in previous 

work. In the work proposed in this paper, we will further study 

the acoustic nature of speech and propose a set of algorithms to 

address different acoustic observations and related issues. 

2.1. Background and consonant noise 

In the region 0.78s-0.85s and 1.05s-1.15s of Figure 1, there are 

some apparent background noises. Such noises tend to introduce 

extra peaks in the final curve. Consonants, especially fricatives, 

also sometimes contribute extra peaks. We apply 2 methods to 

deal with this problem.  

The first method is to use pitch (F0) information. When a peak is 

detected in a region with no voiced activity, it is rejected as 

noise. Since we do not care about the actual pitch value, it is 

helpful to use multi pitch estimators and fuse them together.  

The other method is to use relative threshold to filter out the 

noise. "Relative" here means a scale with respect to the 

maximum peak. Like all threshold problems, it is dangerous to 

set the threshold value in a greedy fashion. Since we have the 

other approach to deal with the noise, we set the threshold rather 

low. 

2.2. Energy curve smoothness 

In all these methods, an energy curve is utilized. Like all short-

time windowing methods, a larger window makes the curve 
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smoother yet loses fine details. A smaller window provides more 

detail but makes the curve noisy and in turn renders peak 

counting difficult. 

In this paper, we propose a new method based on traditional 

windowing. Inspired by spectral cross correlation, and also by 

the fact that each syllable (i.e., similar spectral pattern) lasts for 

a while, we perform a cross correlation also in time domain. Let 

xt, xt+1… xt+K-1 represent an ascending time order of sub-band 

energy vectors with length K. Then compute yt as:  
2
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By this correlation, each syllable has a peak in its center, 

because it spans most of the part of this syllable. The parameter 

K is set by using a development test. 

2.3. Smearing 

In our experiments, and also those in [9], there are a number of 

individual cases where a high speaking rate sometimes results in 

smearing neighboring energy peaks. This makes it particularly 

difficult to derive a high number of syllables for that segment. 

Figure 2. Illustration of peak smearing shown for the word "in-

tro" (from switchboard corpus)  

Figure 2 shows a smearing case where "in" and "tro" show only 

1 peak. The reason is that the interval is smeared by the 

windowing and temporal correlation effect.  

Let w0, w1 … wK-1 represent a serial of window coefficients. 

Perform a weighting operation on x first: 

jtjjt xwx     (eq. 3) 

Here we choose w as Gaussian window centered in the middle of 

the window. The reason for this choice is to amplify any 

discontinuities between neighboring syllables. 

2.4 Over-estimation issues 

It is also observed that for some slow segments, people tend to 

shift the vowel formant to express some prosodic content. Such 

phenomena will bring extra peak estimates in the method as 

proposed in [9].  

As an example in figure3, "so" has only 1 syllable. For fixed 

sub-band, when one formant shifts from 1 band to another, it 

will generate one more peak.  

Figure3. Overestimation for "So" (from switchboard) 

To address this issue, we propose a "selected sub-band 

correlation" method. First, instead of choosing only 4 sub-bands, 

we apply a 19 sub-band (as a facility provided in tool [14]). 

After getting yt, we choose the top M elements to do cross 

correlation as in [9]. By setting M optimally through the 

development test, the experiments show that it helps to resolve 

this issue successfully.   

Another optimization relates to the relative peak measure. Each 

peak height is measured relative to the nearest largest minimum. 

For the extra peaks introduced by such formant movement, it 

always has a very low "height". By thresholding, such peaks 

could be removed. 

3. ALGORITHM AND DESIGN 

Inspired by these ideas, we implemented our full system 

according to the following steps: 

First, the speech is passed through a 19-channel filter bank 

analyzer to get energy vector series. Second, the energy vectors 

are windowed and cross-correlated temporally.  In the third step, 

result energy vector is cross-correlated in salient frequency 

bands. Finally, peak counting is performed on the final 

smoothed curve. Figure 4 gives a system flowchart.  

Figure4. System Flowchart 

Here are some additional implementation comments: 

1) The 19-channel filter bank analyzer uses two second-order 

section Butterworth band-pass filters [14]. Spaced as: 240 | 360 | 

480 | 600 | 720 | 840 | 1000 | 1150 | 1300 | 1450 | 1600 | 1800 | 

2000 | 2200 | 2400 | 2700 | 3000 | 3300 | 3750 

2) We apply 2 pitch estimators: ESPS get_f0 call and cepstrum 

based estimation [14], use the union of the two as the pitch 

estimate. 

3) For curve smoothing, we apply a Gaussian filter. 

4. EXPERIMENTS AND RESULT 

We use the same switchboard database and similar evaluation 

methods as in [9].  A total of 5565 spurts (all that we had in hand) 

were phonetically hand transcribed by linguists in the 

Switchboard Transcription Project at ICSI [2]. A transcribed 

syllable rate was computed by dividing the number of syllables 

occurring in the region by the length of the spurt. Similarly, we 

treat this rate as a reference rate. We use the detected rate to 

correlate with the reference rate to get the final agreement 

measure. 

The ideas and algorithm described above have a heavy heuristic 

flavor based on analysis of spontaneous speech. At this stage the 

approach is not set up as a straight machine learning approach 
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where transcribed data help to setup optimal statistical models. 

We argue that, in fact, such learning ideas can benefit when we 

know what (and,   how) "feature" correlates with the subjects' 

production.  We believe that the "model" we setup here provides 

a step in the direction of helping handle the complexities 

underlying processing spontaneous speech.  

The biggest challenge comes from the setting of many 

parameters that exhibit complex, and often confounding, 

correlations between one another. We address the issue through 

the following methodology: 

Firstly, we are trying to group the parameters such that each 

group is independent or has little correlation with the others. The 

purpose of this step is to reduce the parameters' dimensionality 

such that a big complex problem can be divided into some small 

relatively simplified problems. In our experiment, the temporal 

correlating parameters, the spectral correlating parameters, the 

smoothing parameters/ peak counting thresholds are the 3 major 

groups. We normally fix the other 2 groups in an acceptable 

range and tune the current group's parameter using the 

development set.  

Secondly, we do a sensitivity analysis wherein we pay close 

attention to the parameters that are quite sensitive relative to 

those that are not that influential to the final performance.  For 

example, the temporal correlation window length ("K" in sec 2.2) 

was found to be sensitive and needed detailed experiments to set 

up. On the contrary, the temporal weighting parameters were 

less sensitive and relatively easy to setup.  

Thirdly, by carefully inspecting the data we can set reasonable 

bounds on parameter selection.  For example, the count of 

selected subband ("M" in sec 2.4) should have a close relation 

with formants numbers. So we only consider the range of 3 and 

slightly larger. This is a great reduction from the original 19 

bands.

Lastly, we randomly select 315 spurts as a development set and 

used this to directly set the parameters of the algorithm. Of 

course, this is based on the good design of the previous steps. 

We always run several rounds of cross-validation until we reach 

a local maximum. 

With all these efforts, we achieve the following result in Table 1. 

Besides speech rate, we also measure the correlation coefficients 

between the reference and detected syllable numbers.  

Measure Correlation Mean error Std error

Syllable # 0.972 1.143 2.257 

Rate of speech 0.706 0.340 0.848 

Table 1. Results table 

This result is about 6.9% improvement than single estimator and 

3.5% improvement than multi-estimator evaluated on the same 

database in [9]. 

For the envelope, an example is provided in fig 1(c).

5. CONCLUSIONS  

Experiments have shown that the method proposed in this paper 

offer further advantages over previous methods. For instance, 

the envelope output is smoother and has better syllable count 

performance than previous methods. (fig 1(c)). 

Based on the description in Sec 4, it is clear that the parameter 

selections are empirical and not guaranteed to by formal 

optimization. Even though we get fairly good performance, we 

still believe there is a great potential to further boost the 

performance. A possible alternative approach would be 

designing an adaptive algorithm for dynamic parameter 

adjustment. 
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