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ABSTRACT

Karhunen-Loève Transform, being able to represent stochas-
tic processes under appropriate conditions, is a powerful
signal processing tool. But the high computational cost in-
curred in the modeling of long signals has limited its use in
the recognition of speech segmented at the word level.

In this paper we present a novel algorithm that signifi-
cantly reduces the computational cost when the number of
signals to be treated is small in comparison to their samples.

1. INTRODUCTION

The Karhunen-Loève Transform (KLT) is a representation
of stochastic processes (SPs) defined over a bounded inter-
val, and is therefore suitable to characterize speech signals
segmented at the word level. This transformation ensures
the best approximations for SPs under the fixed-rank condi-
tion, thus establishing a second-order statistical characteri-
zation of the SP in terms of uncorrelated random variables
(RVs). In general, this approach produces a canonical rep-
resentation of a given zero-mean SP that can be written as a
linear combination of orthonormal functions, whose coeffi-
cients are thus zero-mean RVs.

The KLT properties described so far are the roots for its
widespread use amongst different application fields, such
as information coding, image compression and restoration,
model order reduction in distributed parameter systems, and
so on. In the field of speech signal processing, such operator
is generally used as an effective means for speech enhance-
ment, but apart from this, it only plays a marginal role in
the modeling or recognition of speech, mostly because of its
computational complexity. Some approximated approaches
to overcome this problem have been developed [1], but the
need for establishing a rigorous formulation of the signal
representation, without relying on approximations, may dis-
courage the use of such techniques in many applications.

In this paper we propose an efficient algorithm to com-
pute the KLT, suitable for the development of a rigorous
model of speech signals. Different utterances of the same
word have been considered as realizations of an SP to which

it is possible to apply the KLT operator. Using a theoreti-
cal formulation, based on an analytical approach, a proce-
dure to compute the KLT operator has been obtained. The
proposed formulation exploits the (integral operator) ker-
nel separability property that arises when the correlation of
the SP is estimated from a set of known sample realiza-
tions. The resulting algorithm in the discrete-time domain
can be viewed as a sort of Singular Value Decomposition
(SVD) [2] optimized to address the problem of computing
the KLT in the common case when the number of realiza-
tions is small with respect to their length (expressed in sam-
ples). Experimental evidence showed a significant amount
of reduction in computation time with respect to both SVD-
based and traditional KLT algorithms.

2. TRADITIONAL KLT

Let ξ(t) be a real-valued zero-mean SP, defined over the in-
terval [0, T ], whose autocorrelation function is Rξξ(t, s) =
〈ξ(t) ξ(s)〉. The KLT [3] is a canonical representation of
such SP, in the mean square sense, given by:

ξ(t) =
∑∞

k=1
ak ϕk(t) (1)

where {ϕk(t)}k∈N is a set of orthonormal eigenfunctions
of the autocorrelation function Rξξ and ak are uncorrelated
zero-mean RVs, defined as:

ak =
∫ T

0

ξ(t) ϕk(t) dt , 〈ai aj〉 = λi δij , (2)

and λk happens to be the eigenvalue corresponding to the
eigenfunction ϕk(t) of the operatorial equation:

∫ T

0

Rξξ(t, s) ϕk(s) ds = λk ϕk(t) (3)

whose solutions are such that:

Rξξ(t, s) =
∑∞

n=1
λn ϕn(t) ϕn(s) . (4)

From (2) one of the most important properties of this
representation follows: If the series (1) is truncated in such a
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way as to maintain only the terms corresponding to the big-
ger eigenvalues, the resulting sum will be the best approxi-
mation, in the mean square sense, of the stochastic process
being represented. This property may be easily verified us-
ing the fact the the coefficients ak are uncorrelated.

In the case of finite discrete-time SPs each realization
can be seen as a vector of random variables. Let x be a
vector of this kind, whose j-th element corresponds to the
random variable extracted from the process ξ(tj) in corre-
spondence of the j-th point where the process is defined. It
is thus possible to replace the correlation function Rξξ(t, s)
with a matrix:

Rxx = 〈xxT 〉 (5)

which is obviously symmetric, and the eigenfunctions sim-
ply with the eigenvectors of the (5).

Let U be a matrix whose columns constitute a set of
orthonormal eigenvectors of Rxx, so that UT U = I and:

Rxx = UΛUT , Λ = diag
i=1,...,M

λi (6)

where M is the number of non-null eigenvalues. Thus, for
every realization x, it is possible to write the vector a of the
coefficients ak as UT x and vice-versa, through the matrix
U, we can obtain the realizations from the vector of the
coefficients as:

x = Ua . (7)

Eqn. (7) is the discrete-time equivalent of the series repre-
sentation (1). These representations are called Karhunen-
Loève transforms, and they constitute a generalization of
the Fourier transform.

In order to exactly compute U, the correlation matrix of
the stochastic process to be represented should be known in
advance. This is often not possible, and it is common prac-
tice to rely on approximations computed using an estimate:

Rxx ≈ (1/N)
∑N

k=1
xk xT

k = (1/N)DDT (8)

made with a set of N sample realizations xk, contained in
the columns of the L × N matrix D.

The matrix so obtained may be used straightforwardly
to compute the decomposition (6), but it is necessary to
be aware that observations of the stochastic process must
be made so that the sample realizations are all of the same
length L, and that this length determines the dimensions of
the resulting matrix R, of which it is necessary to compute
eigenvalues and eigenvectors. The algorithms commonly
employed to solve this symmetric eigenproblem have in-
deed a computational complexity of order O(L3) (see Sec-
tion 4), but moreover they require the whole L × L matrix
to be stored in memory. Alternatively, it may be possible
to directly compute the SVD of the data matrix D, but this
approach is unsuited to continuous-time signals and proved
to be from almost twice to three times slower than the pro-
posed approach.

3. THE FAST KLT ALGORITHM

Considering the continuous-time problem first, we maintain
that when the correlation function can be approximated as:

Rξξ(t, s) ≈ 1
N

∑N

i=1
xi(t) xi(s) (9)

where xi(t), i = 1, . . . , N are sample realizations of the
stochastic process ξ(t), it is possible to exploit the separa-
bility property of the kernel to get a closed-form solution
to the eigenproblem, and to obtain a substantial gain in the
discrete-time computation of non-null eigenvalues and cor-
responding eigenvectors. Rewriting (3) as follows:

1
N

∫ T

0

∑N

i=1
xi(t) xi(s) φk(s) ds = λkφk(t) (10)

and letting:

aik =
∫ T

0

xi(s) φk(s) ds (11)

we have:

1
N

∑N

i=1
aik xi(t) = λkφk(t) . (12)

Multiplying both sides of (11) by the eigenvalue λk and ap-
plying (12), we obtain:

λk aik =
1
N

∑N

j=1
ajk

∫ T

0

xi(s) xj(s) ds (13)

which is the eigenproblem about the matrix S of the nor-
malized scalar products sij between pairs of realizations:

sij =
1
N

∫ T

0

xi(s) xj(s) ds . (14)

Let the diagonal matrix Λ of the non-null eigenvalues
λk and the N × M eigenvector matrix A be the solution to
this problem, so that [A]ik = aik and:

S = AΛAT AT A = I . (15)

Having found the aik coefficients it is easy to compute all
the eigenfunctions corresponding to non-null eigenvalues
using (12). After normalization the eigenfunctions are thus:

ϕk(t) =
1√

λk N

∑N

i=1
aik xi(t) . (16)

Similarly, the discrete-time equivalent of (16) will be:

U = N−1/2 DAΛ−1/2 (17)

with the columns of U containinig the eigenvectors of the
corresponding discrete-time eigenproblem, problem that can
simply be stated by redefining the matrix S as being:

S = (1/N)DT D . (18)

Eqs. (18), (15), and (17) thus represent, in this order, the
operational steps the Fast KLT algorithm is composed of.
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“Traditional KLT” complexity
i) Computation of R L2N
ii) Computation of U (eigenvectors) 4

3L3

“Fast KLT” complexity
i) Computation of S LN2

ii) Computation of A and Λ 4
3N3

iii) Computation of U (eigenvectors) (L + 1)NM

Table 1. Fast & Traditional KLT complexity

4. FAST VS. TRADITIONAL KLT

This section will give a detailed analysis of the computa-
tional savings that can be achieved using the Fast KLT al-
gorithm, instead of the traditional one.

As depicted in Table 1, the traditional KLT algorithm is
composed essentially of two steps: the computation of the
matrix, and the solution of the corresponding eigenproblem.
The Fast KLT algorithm performs the same operations, but
on a smaller matrix, and adds a third step needed to com-
pute the linear combination (17). In this context, the com-
putational cost has been expressed in terms of the (approxi-
mate) number of operations, in this case simple multiplica-
tions (MULs), required to perform each step.

As it is easy to note, if N � L the efficiency of the fast
algorithm is far higher than that of the traditional algorithm:
the computation of S only requires LN2 MULs instead of
the L2N required for R. The eigenproblem to be solved
is only of order N instead of order L, accounting for [4]
about 4/3 N3 MULs, instead of 4/3 L3. The Fast version
has indeed an additional step, needed to compute (17), but
its complexity is just similar to that of the first step. It ac-
counts for about (L+1)NM MULs, and being M (number
of non-null eigenvalues) not greater than, and usually very
close to, N , this cost can be approximated to LN2, which
is the same cost that has been incurred in the computation
of the matrix S itself.

From this data, it is possible to state that, in the condi-
tion we consider, that is, when L � N , the overall cost of
the two algorithms may be appoximated with 4/3 L3 for the
traditional version and with 2LN2 for the Fast version.

An experimental measure of the computation times re-
quired to obtain the eigenfunctions has been carried out on
a system equipped with a 3.2 GHz PentiumTM IV proces-
sor, using the dsyevr and dgesdd routines [5] of the
LAPACK libraries, for eigen- and singular value decompo-
sition, respectively, combined with the ATLAS [6] package
for basic linear algebra calculations. Some results have been
reported in Table 2, from which a two order of magnitude
gain with respect to the tradition KLT and a factor between
two and three with respect to SVD appears. Furthermore,
the traditional algorithm uses larger matrices, and was un-
able to execute on the test system for longer L.

L Step i) Step ii) Step iii) Total

“Fast KLT” N = 500
500 0.06 s 0.37 s 0.07 s 0.50 s

5000 0.54 s 0.37 s 0.64 s 1.55 s
20000 5.02 s 0.37 s 2.58 s 7.97 s

“SVD-based KLT” N = 500
500 — — 0.83 s 0.83 s

5000 — — 4.31 s 4.31 s
20000 — — 17.16 s 17.16 s

“Traditional KLT” N = 500
500 0.06 s 0.38 s — 0.44 s

5000 6.04 s 154.08 s — 160.12 s

Table 2. Computation time comparison of the fast versus
the SVD-based and traditional KLT algorithm.
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Fig. 1. A speech signal and its reconstructions.

5. APPLICATION EXAMPLES

In this section some examples of the application of the KLT
to speech signals are presented. The knowledge base used
to perform these applications was the Italian section of the
Multext Prosodic Database [7], which is an extract from
the EUROM.1 speech corpus. Ten Italian speakers, hav-
ing different sex, age, and geographical origin, recorded 15
sentences in an anechoic room, amounting to nearly 7000
words, transcribed and segmented at the word level.

The computational complexity reduction obtained by us-
ing the Fast KLT algorithm permits to accurately model
speech signals segmented at the word level. Thus, different
utterances of the same word have been considered as differ-
ent realizations of a single zero-mean SP, to which the Fast
KLT operator has been applied. For each word it is thus pos-
sible to obtain the canonical decomposition (4). With this
decomposition it is then possible to characterize a whole
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Fig. 2. Dynamic of the eigenvalues associated to the Italian
words “settimana” and “favore”.
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Fig. 3. Some eigenvectors of the Italian word “settimana”.

class of signals through a set of eigenfunctions, which are
dependent on the word spoken but not on the particular ut-
terance, and are thus common to all the signals in the class.
The particular utterance is further characterized by its pro-
jections onto the eigenfunction basis, i.e. by a realization of
the RVs ak in (1).

The signals to which the KLT is to be applied must all
have the same length. To accomplish this, zero-padding has
been applied at the end of each signal, and despite of the
huge variability of signal lengths, no transformations nor
resampling have been applied to the signals themselves, in
order not to alter what we believe is a characteristic phe-
nomenon of human speech.

As an example, the Italian word “settimana” (that means
“week”), has been considered. One of its realizations is
shown in Fig. 1, together with its reconstruction using a lim-

ited set of eigenvectors (the reconstruction over the whole
set is obviously identical to the original signal), and over
the eigenvectors obtained through the characterization of a
different word (Italian “favore,” which means “favor”). It
is apparent that in this case the rebuilt word is totally dif-
ferent from the original one, as it is nevertheless a linear
combination of words belonging to the class “favore.” This
phenomenon has some interesting aspects for its foreseeable
applications in speech recognition techniques [8].

In order to complete the characterization, the dynamic
of the eigenvalues is shown in Fig. 2, and some of the eigen-
vectors are shown in Fig. 3. It is clear that such eigenfunc-
tions are a linear combination of the original signals, as it
should be being them obtained through (16).

6. CONCLUSIONS

In this paper an efficient algorithm for the fast computa-
tion of the KLT operator, named Fast KLT, has been pre-
sented. It derives from a rigorous theoretical analysis based
on properties of separable kernels. The Fast KLT efficiently
computes eigenvectors corresponding to non-zero eigenval-
ues of the correlation matrix when this is estimated from a
small number of sample realizations.

Some application examples of the Fast KLT have shown
the effectiveness of this technique to model speech signals
segmented at the word level, for which the application of
the traditional algorithm would have been unpractical.
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