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ABSTRACT

This paper presents an improvement of the Discrete Wavelet Trans-
form (DWT)-based phonetic classification algorithm by using Neu-
ral Networks (NN) to learn optimal thresholds for speech classifi-
cation. Two feedforward NNs (two layers) operate on input fea-
tures extracted from speech frames (10ms length) by DWT and
statistical measurement in order to classify these frames as tran-
sient, voiced vowel, voiced consonant and unvoiced consonant cat-
egories. Hard thresholds in our earlier paper are used to detect
silence and voiced closure intervals. The new algorithm is tested
with the TIMIT database and compared with other algorithms to
demonstrate its superior performance.

1. INTRODUCTION

The classification of speech frames is an important step in many
speech processing applications. Some speech coding systems re-
quire phonetic classification to determine the optimal bit allocation
for every different speech frame. The discrimination between pho-
netic classes will improve quality and performance of data-driver
speech synthesizers. Speech classification has been studied by a
variety of methods. Some linear speech classification such as [7]
use statistical features (relative energy level, zero crossing rate,etc)
of the speech signal to decide about voiced, unvoiced or silence.
In other approaches, the specific spectral charactersitic of speech
sounds are exploited by optimal filters designed to discriminate
among speech classes [3]. Furthermore, some DWT-based algo-
rithms have been developed to achieve classification at the pho-
netic level [1],[2]. Since the development of the backpropagation
learning algorithm, the feedforward NN has been used widely in
pattern recognition and, in particular, for speech classification with
promising potential [4], [5], [6].
In this paper, we propose a new combined system of linear and
NN-based nonlinear classifiers using wavelet parameters as well
as statistical parameters to increase the performance and robust-
ness of an optimal threshold-based speech classifier. The goal is
to classify 10ms speech frames into phonetic categories [1]. Then,
smoothing and interpolation techniques are used to mark bound-
aries between phonetic groups which we define as homogeneous
sequences of speech sounds that belong to the five phonetic classes
considered above. One of our new contribution is the consideration
of so-called ”wavelet-detail ratio features” across two neighbour-
ing frames as input for the transient detection. Gender-dependent
and gender-independent NN classifiers are built to study and eval-
uate the impact of speaker dependency on speech classification.

2. ADVANTAGES OF DWT IN SPEECH PROCESSING

Any signal s(t) can be represented with basic functions as:
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X
m
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n
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With a0 = 2 and b0 = 1, we obtain the dyadic DWT. The ad-
vantage of DWT in speech processing is based on the relation be-
tween DWT and multiresolution analysis (MRA) which provides
the structure for a multiscale decomposition of a signal. If we have
a function s(t), it can be decomposed into the sum of a low-pass
approximation plus L details at L resolution stages as:
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where φ(t) and ψ(t) are a scaling function and a wavelet func-
tion, cm,n and dm,n are the approximation or scaling coefficients
(low-frequency part) and the detail or wavelet coefficients (high-
frequency part) of the output of the DWT which are given by:

cm,n =
√

2
∞X

k=−∞

cm−1,kh0(k − 2n) (4)

dm,n =
√

2

∞X
k=−∞

cm−1,kh1(k − 2n) (5)

where h0(n) and h1(n) are synthesis low-pass and high-pass re-
sponses of a two-band paraunitary filter bank.
Typically, the energy of the voiced vowel frames is mostly con-
tained in the approximation part and much less in the detail part
and vice verse for the unvoiced consonant frames. The relative
equal energy distribution occurs in the voiced consonant frames.
So, this property can be used in the specific representation of the
three different classes. Furthermore, the signal is decomposed into
different scale levels, and the energy of the details varies over dif-
ferent scales in different ways, depending on the input signal (a
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property similar to spectral tilt). We observe this energy variation
of the detail coefficients for voiced vowel frames in Fig. 1-a and
unvoiced consonant frames in Fig. 1-b as:

E(d1,n) < E(d2,n) < E(d3,n) < E(d4,n) (6)

E(d1,n) > E(d2,n) > E(d3,n) > E(d4,n) (7)
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Fig. 1: Energy variation of detail coefficients over 4 levels and
power spectral density

From the observation at the first three levels of wavelet analysis
in Fig. 2, we can also apply the energy variation of detail coeffi-
cients for transient classification when considering two neighbor-
ing frames. A transient frame always has higher absolute energy
in its details coefficients than a closure interval frame which may
be silence or periodic. This characteristic is used to define the clo-
sure interval-transient detail energy ratio and combining with other
statistical features to detect transient frames.
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Fig. 2: Different energy variation of detail coefficients over first 3
levels for a closure interval followed by a transient frame.

3. FEATURE EXTRACTION

As discussed in the introduction, we want to classify five types of
phonetic groups which are homogeneous frames sequences having
the same phonetic characteristics as follows:

∗ A silence group are frames which have a very low overall am-
plitude level and a blank spectrogram.

∗ A voiced vowel group includes vowels, semivowels and diph-
thongs which have a repetitive time-domain structure and low-
frequency voiced striations in the spectrogram.

∗ A voiced consonant group includes voiced and glottal fricatives
which have both periodic and noise-like properties, and nasals,
which have a weak and interrupted voice bar in the spectrogram.

∗ An unvoiced consonant group includes only unvoiced fricatives
which have an irregular time-domain structure and only high
frequencies in the spectrogram.

∗ A transient group include plosives and affricates which contain
a transient frame inside.

As the basis for the phonetic classifier, we need to extract the
following representative features from each frame which has 10ms
length corresponding with K=160 samples:

• Approximation wavelet energy ratio (AWER) is the ratio of the
energy in the approximation coefficients and the energy of all
wavelet coefficients at the first level of wavelet analysis:

AWER =

PN1

n=1
(c1,n )2PN1

n=1
(c1,n )2 +

PN1

n=1
(d1,n )2

(8)

where c1,n and d1,n are the approximation and detail coeffi-
cients (length N1) at the first level wavelet analysis.

• The energy variation of detail coefficient (EVD), (see Fig. 1) is
defined by the following equation:

EV D(m, k) =
1

Nm

NmX
n=1

(dm,n )2 − 1

Nk

NkX
n=1

(dk,n )2 (9)

where Nm and Nk are lengths of detail coefficient sequences
dm,n and dk,n at different analysis level m and k.

• The closure interval-transient detail ratio (CTDR) is the ratio
of the detail coefficient energies at the same wavelet analysis
level, computed for the closure interval and the following tran-
sient frame in Fig. 2:

CTDR(m) =

PNm

n=1
(d2

m,n)2PNm

n=1
(d1

m,n)2
(10)

where d1

m,n and d2

m,n are the wavelet detail coefficients of the
closure interval and the transient frame, Nm is the length of the
sequences d1

m,n and d2

m,n.

• Short-term average energy (SAE) is calculated for each frame:

SAE =
1

K
·

KX
i=1

(
s(i)

sp
)
2

(11)

where s(i) are the samples of 10ms frame, and sp is the peak
value of the input signal.

• Zero crossing rate (ZCR) is a measure of frequency content of
each speech frame:

ZCR =
KX

i=1

|sgn[s(i) − sgn(s(i − 1))]| (12)

4. NEURAL NETWORK CLASSIFIER

4.1. Network configuration setup

A supervised learning algorithm is used to train a two-layer feed-
forward network. This means that the network weights and biases
are adjusted to minimize the mean square error between the net-
work outputs and real target outputs.
We train a first network with 5-dimensional input vectors and 1-
dimensional output to detect transient frames. Second network
is configured with 4-dimensional input vectors and 3-dimensional
output to perform the three-way classification: voiced vowel frame,
voiced consonant frame and unvoiced consonant frame. The out-
put is labeled as 1 for the desired frames and 0 for other frames.
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As a preprocessing step, all elements of the input and output vec-
tors are normalized to get zero mean and unity standard deviation
over the training set. The feedforward networks use log-sigmoid
transfer functions for all hidden units in their hidden layer and lin-
ear transfer functions at the output layer. Biases and weights of
each unit are initialized to very small random values.

4.2. Network learning algorithms

To avoid overfitting in the backpropagation learning algorithm, a
weight decay heuristic (regularization) is used to decrease each
weight by some small factor during each iteration. This modifies
the typical performance function by adding a penalty term corre-
sponding to the sum of squares of the network weights [9]:

Ereg = γ
1

N

NX
i=1

(ti − oi)
2 + (1 − γ)

1

M

MX
j=1

(wj)
2 (13)

where γ is a performance ratio, wj are the weights of the NN, and
ti and oi are the output and target values, respectively.
This approach results in smaller weights and biases and forces the
network response to be smoother over its complex decision surface
[8]. We select the best learning algorithm among the following
ones: momentum, variable learning rate, Levenberg-Marquardt
and BFGS Quasi-Newton algorithms. Some common parameters
of the learning algorithms are set as follows:

• The learning rate lr = 0.05.

• The number of iterations epochs = 1000.

• The training performance goal = 1e − 5

• The performance ratio and the number of hidden units are varied
as γ = [0.3, 0.35, ..., 0.8] and nH = [5, 10, ..., 140] to find out
the optimal values where the sum of training and testing error
rate is smallest.

The datasets are taken from the TIMIT database, dialect speaking
region 1 (DR1). Each dataset is divided into 70% training set and
30% test set. Female speaker and male speaker datasets are col-
lected separately to investigate a gender-dependency of the pho-
netic classifier. Another mixed dataset containing both of genders
is used to design a gender-independency phonetic classifier.
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Fig. 3: The average error percentage on the training set and the
test sets for the three-classes NN classifier and for female speaker.

From the results of the training phase, we see that the Levenberg -
Marquardt (LM) algorithm gives the highest classification perfor-
mance generally (Fig. 3-a). For this learning algorithm, the opti-
mal choice of the performance ratio γ and number of the hidden

units nH , which achieves the lowest error percentage on the train-
ing and test sets of the one-class NN classifier and three-classes
NN classifier for female speaker is 0.75−60 and 0.40−100 (Fig.
3-b), for male speaker is 0.55−55 and 0.50−125, and for mixed-
speaker is 0.55 − 70 and 0.65 − 110.

5. COMBINED CLASSIFICATION ALGORITHM

A phonetic group classification algorithm is proposed with four
sequential steps shown in Fig. 4.
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Fig. 4: The classification combined algorithm.

• First, silence (S) and voiced closure interval frames are de-
tected by linear classifier (see Fig. 5) using threshold-based de-
cision model in [1], with AWER3 = 99%, EV D1 = 0.15,
EV D2 = 0.35, SAE1 = 0.001/160, SAE2 = 0.025/160 and
SAE3 = 0.016/160 (where SAE3 is a new threshold suggested
to improve silence detection). Subsequently, presmoothing is used
to eleminate some wrong decisions to decrease probability that the
transient classifier can make incorrect decisions.
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Fig. 5: The flow chart of the linear classifier in [1].

• Second, transient (T ) frames are detected by considering
frames which immediately follow silence or voiced closure inter-
val frames. Five parameters such as AWER, ZCR, CTDR(1),
CTDR(2), and CTDR(3) are computed for these frames and
classified by the first NN. The network distinguishes between tran-
sient frames and other frames.

• Third, four parameters such as AWER, SAE, ZCR and
EV D(1, 3) of every not yet classified frame are calculated to build
the input vectors for the second NN. The three classes voiced vowel
(V ), voiced consonant, and unvoiced consonant are recognized
based on the output values of the second neural network.

• Finally, an interpolation method relying on phonemic fea-
tures is implemented to build the temporal boundary of plosives
and affricates which are formed by closure interval + transient
+ stop release frames which are the detected unvoiced consonant
frames following transient frame. Then, some remaining incorrect
decisions are repaired by the smoothing method based on sequen-
tial consistency of speech sound such as: VVSVV → VVVVV, or
SSTSS → SSSSS, etc..
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6. CLASSIFICATION RESULTS

Speech sounds used to build the experiment dataset are general
data including transition frames and extracted from the DR1, TIMIT
database with 7 male and 4 female speakers, 110 utterances, 85
sentences and 30065 frames in total. The performance of our new
algorithm is assessed on the test set in the following ways:

• The relative classification error = (misclassified frames*100%) /
tested frames [%].

The classification results are reported in Tab. 1 and Tab. 2. We
observe a good generalization performance of the NN classifiers
because the error rates are similar both for the training and test
data, specially for unvoiced consonants.

Silence Voiced closure interval
M F A M F A

Train 1.82 2.38 2.10 8.79 8.83 8.81
Test 1.95 2.52 2.23 9.94 9.56 9.75

Table 1: Classification error percentage corresponds with male
speaker (M), female speaker (F) and average values (A).

Gender-Dependent Gender-Independent
Train Test Train Test

M 5.91 6.29 6.45 6.92
Transient F 5.42 6.94 4.82 5.56

A 5.67 6.93 5.63 6.55
M 2.30 2.67 2.50 3.02

Voiced vowel F 1.29 2.09 2.34 2.85
A 1.79 2.38 2.42 2.93
M 1.59 1.69 2.36 2.48

Unvoiced F 1.15 1.29 1.89 1.99
consonant A 1.37 1.49 2.12 2.23

M 13.77 14.98 15.26 16.36
Voiced F 10.31 11.08 11.34 13.85

consonant A 12.04 13.03 13.30 15.11

Table 2: Classification error percentage of four classes with
gender-dependent and gender-independent classifier.

The average difference of error percentages between two types of
classifiers is 1.11%. It is lower than the one using hybrid fea-
tures with NN (2%) in [5]. We see that the results achieved by the
gender-independent NN are somehow worser than the results got
by the gender-dependent NN. The reason is the gender-independent
NN has to learn more complex borders of the classes from the big-
ger mixtured-dataset.
In comparison with our MTD model reported in [1], the new algo-
rithm gets slightly better performance for the detection of silence,
voiced closure interval, unvoiced consonants, and almost 2% lower
error rate for transient and voiced consonants. We found that the
error percentage of voiced vowels is slightly higher than in [1] but
it is acceptable because we benefit more from the improved voiced
consonants detection capabilities. In comparison with SUB-CRA
in [2], it is clear that our new algorithm gains lower error rate for
silence and unvoiced consonants (2.42% and 1.17% in comparison
with 3.5% and 4.83%, respectively).
The average error percentage of 3 classes silence, voiced vowels
and unvoiced consonants is 1.25% lower than the one of classifier
using a NN with 5 features in [6]. In comparison with the classi-
fier using high-rank function neural network in [4], our combined

classifier get 0.95% higher average error rate for voiced vowels
and unvoiced consonants. This is resonable because voiced con-
sonants are not detected by [4]. That means our new classifier has
wider classification ability.

• The error rate of plosives and affricates is calculated with speech
datas in DR4, TIMIT (as used in [3]). Our error percentage ap-
proximates with the one using the optimal-filter based algorithm
in [3] which detects only stop consonant (16.78% in comparison
with 16%), and is 3.76% lower than the one in [1].

• The average error rate difference between male speaker and fe-
male speaker is reduced with 1.14% compared to 1.25% of the
MTD in [1] and 1.33% of the EGG-based algorithm in [7]. This
reduction is useful in approaching towards a gender-independent
speech classification.

7. CONCLUSION AND OUTLOOK

The experimental results presented in the paper illustrate that, in
general, the neural network classifiers obtained with an advanced
training algorithm typically produce the better and more robust
performance than other non-linear classifiers for clean speech as
represented by the TIMIT database. The influence of environmen-
tal noise such as car noise, street noise and white noise will be con-
sidered carefully in our future research. This is usefull for speech
classification in hard environments.

8. REFERENCES

[1] Pham Van Tuan, Gernot Kubin, ”DWT-based Classifica-
tion of Acoustic-Phonetic Classes and Phonetic Units”,
Proc.ICSLP’04., Jeju, South Korea, Oct. 2004.

[2] Z. Lachiri, N. Ellouze, ”Speech classification in noisy envi-
ronment using subband decomposition”, Proc. ISSPA, Vol.
1, pp. 409-412, 2003.

[3] P. Niyogi, M. M. Sondhi, ”Detecting stop consonant in con-
tinuous speech”, J. Acoust. Soc. Am., Vol. 111, pp. 1063-
1076, 2002.

[4] Jiang Minghu, Yuan Baozong, Lin Biquin, ”The consonant/
vowel speech classification using high-rank function neural
network”, Proc. ICSP, Vol.2, pp. 1469-1472, Brighton, UK,
1996.

[5] Yingyong Qi, Bobby R. Hunt, ”Voiced-Unvoiced-Silence
Classifications of Speech Using Hybrid Features and a Net-
work Classifier”, IEEE Trans. on Speech and Audio Pro-
cess., Vol. 1, pp. 250-255, 1993.

[6] Thea Ghiselli-Crippa, Amro El-Jaroudi, ”Voiced-unvoiced-
silence classification of speech using neural nets, IJCNN,
Vol. 2, pp. 851-856, Seattle, USA, 1991.

[7] D.G. Childers, M. Hahn, J.N. Larar, ”Silence and
voiced/unvoiced/mixed excitation classification of speech”,
IEEE Trans. on Acoust, Speech, Signal Process., Vol.37,
No.11, pp. 1771-1774, 1989.

[8] Tom M. Mitchell, ”Machine Learning”, McGraw-Hill,
USA, 1997.

[9] Matlab TM, ”Toolbox of Neural Network Reference
Guide”, The MathWorks Inc., 1995.

I - 404

➡ ➠


