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ABSTRACT

We explore new methods of determining automatically derived
units for classification of speech into segments. For detecting sig-
nal changes, temporal features are more reliable than the stan-
dard feature vector domain methods, since both magnitude and
phase information are retained. Motivated by auditory models,
we have presented a method based on average level crossing rate
(ALCR) of the signal, to detect significant temporal changes in
the signal. An adaptive level allocation scheme has been used in
this technique that allocates levels, depending on the signal pdf
and SNR. We compare the segmentation performance to manual
phonemic segmentation and also that provided by Maximum Like-
lihood (ML) segmentation for 100 TIMIT sentences. The ALCR
method matches the best segmentation performance without a pri-
ori knowledge of number of segments as in ML segmentation.

1. INTRODUCTION

In the 1960’s, D.R.Reddy[1] had developed a speech

segmentation scheme, using the variation of intensity levels

and zero-crossing counts, and other program parameters were

obtained by visual inspection of the waveform. More recently,
spectrograms [2] have been used for hierarchical acoustic

segmentation of continuous speech. Van Hemert [3] has used

the intra-frame correlation measure between spectral features to

obtain homogeneous segments. Statistical modeling (AR,ARMA)
[4] of speech was also used for segmentation, by detecting

sequential abrupt changes of model parameters. HMM based

automatic phonetic segmentation [5] requires extensive training

data but they have reported very high degree of segmentation
accuracy. The popularly used feature vector based methods

for speech segmentation are Spectral Transition Measure(STM)

and Maximum Likelihood(ML) segmentation [6].Of the spectral

domain methods, ML is widely used for phone-level segmentation.

Due to coarticulation effects, the spectral transition

across some phoneme boundaries is not clearly defined in the

signal and phoneme boundaries start to appear, well within the
previous phonemes. The question therefore is whether we are

losing out on useful temporal information when we work in the

spectral domain. Also, the question remains as to how robust the

spectral features are to noise. It was shown in [7] that MFCC
serves as a robust parameter set for speech segmentation. We

would like to compare our time-domain method with the spectral

domain methods (using MFCC) for automatic segmentation.

Since there is more information in the temporal domain,
we explore a time-domain approach that uses a feature sensitive

to both amplitude and frequency changes of the signal. The level

crossing rate(LCR) of a signal is such a feature and is motivated by

the human auditory analysis. The neural transduction at the output
of the cochlea is believed to be in the form of signal level cross-

ing detectors. This approach was used by Ghitza[8] to develop

a noise robust front-end for speech recognition. In his work, the

Ensemble Interval Histogram(EIH) model was proposed as an in-

ternal representation, from which spectral information is derived.
Though EIH model follows a subband approach for spectrum esti-

mation, we will use the fullband signal, in the temporal domain.

2. SEGMENTATION USING ALCR INFORMATION

We define the level crossing rate (LCR) at a sample point,

and for a certain level, as the total of all the level crossings, that

have occurred for that level, over a short interval around the point,

divided by the interval duration. From the 2D information of LCR,
we obtain the average level crossing rate (ALCR) at each point by

summation of LCR over all levels. The motivation behind using

the temporal information for segmentation is that when we change

from one phoneme to the next, in most cases, there is a marked
change in the vocal tract configuration. We expect this point of

change to be expressed through a valley in the ALCR curve. When

one phoneme waveform dies down to make way for another, the

change will be manifested by substantial change in both ampli-
tude and frequency, and ALCR curve, being sensitive to both, will

be able to track the changes. Once the ALCR is computed, we

smooth it using a moving-average filter for ease of identifying seg-

ment boundaries. Fig.1 demonstrates how ALCR depicts changes
in signal waveform properties.

Consider a synthetic signal example of Fig 1. The signal shows

both amplitude and frequency changes. By noting the points of

change in ALCR curve and then, by applying duration constraints

(as is done for speech segmentation), the segment boundaries,
marked in black, can be clearly distinguished .

2.1. Overview of ALCR-based Segmentation

We will use ALCR to detect changes in the signal pattern. To

apply level crossing on a signal, the level distribution has to be de-

cided upon. In our experiments, we have used both uniform (pdf-

independent) and non-uniform (pdf-dependent) level distributions.
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Fig. 1. Average Level Crossing Rate (ALCR) superimposed on

signal waveform, brings out points of change in signal

Generally, speech signal amplitude x[n] follows a Laplacian pdf,

and phoneme changes are reflected within a certain signal range.

Empirically, it is observed that for a signal, amplitude ranges such

that the CDF P (X ≤ x) is within [0.90,0.99] and [0.01,0.10] are
most useful for detecting phoneme changes. In the pdf-dependent

scheme, we allocate more levels in the region of increased phone-

mic changes for detecting finer signal variations. Also, ALCR

will be sensitive to noise, and by performing pdf-estimation on
both signal and noise, we try to incorporate a degree of noise ro-

bustness in our methodology. To corroborate this observation, we

have compared ALCR schemes, with and without the incorpora-

tion of noise robustness (Table 1). Once the level distribution and
noise robustness issues are decided upon, we detect level cross-

ings, within a window around each sample and for all levels. Thus,

we have transformed the time-domain information to a new feature

space, represented at each point by its ALCR. For segmentation,
we wish to pick valleys from the ALCR curve, which has a rough

contour. For removing spurious valleys, we apply mean smoothing

on the ALCR curve.

2.2. ALCR-based Segmentation Algorithm:

The segmentation algorithm can be described as follows:

1. Input signal: x[n] normalized to lie within [-1,1] and then

made zero mean;

2. The levels ηj , (1 ≤ j ≤ J), where J= total no. of levels,

can be distributed using the following schemes:

a) Uniform allocation of levels, to cover the entire dynamic
range of the signal

b) Pdf-dependent non-uniform allocation of levels

For non-uniform level allocation, we select λ1,λ2,λ3 and

λ4, based on the empirical signal pdf, such that
Fs(λ1) = 0.01
Fs(λ2) = 0.10
Fs(λ3) = 0.90
Fs(λ4) = 0.99.

Here, Fs(x) denotes the signal CDF, at value x. The his-

togram of speech data is taken as an approximation of its pdf.

Normally,the SNR of the speech is estimated using the noise

variance of the silence regions. Let min and max denote

the minimum and maximum signal values, respectively. It

is found from the TIMIT sentences that phonemic changes

rarely occur in the signal of ranges [λ4, max] and [min,λ1].
Therefore, we assign less no. of levels for these ranges. For

stop consonants and bursts, changes occur mainly for values

near 0. So, level changes in [λ2, λ3] are important. However,

levels in this range are also sensitive to noise. By putting
more levels, we can detect all fine temporal changes, at the

cost of false insertions. Signal changes are most prominent

in the ranges [λ1, λ2] and [λ3, λ4], and so we allocate more

levels here. Also, these levels are more robust to noise.

For SNR=36dB, we allocate 4,32,8,32 and 4 levels for the
regions [min, λ1],[λ1, λ2],[λ2, λ3],[λ3, λ4] and [λ4, max],
respectively. For SNR=10dB, we allocate 3,20,4,20 and 3

levels for these ranges. Though an optimal level distribution

for a certain SNR has not been obtained, we propose that
the level distribution should be adaptive, depending on the

SNR. For lower SNR, we use less no. of levels to avoid

false insertions, at the expense of missing out on some fine

temporal changes. For higher SNR, we reduce the level
spacing and allocate more levels in [λ1, λ2] and [λ3, λ4]
to detect the fine changes. Similarly, for uniform level

allocation scheme, large no. of levels(41-65) can be used

at high SNR to detect fine changes. For 5-10 dB SNR, we
conservatively use 13-25 levels to reduce insertion errors, at

the cost of reduced segment match.

3. Noise Robustness Scheme:
We find the pdf of the background noise amplitude from the

signal histogram, computed over the initial silence portion.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

dynamic range of signal is from [−1,1]

sig
na

l a
nd

 n
ois

e 
pd

f −
−>

 [ ε
1
,ε

2
] denotes range where noise pdf is dominant 

ε
2ε

1

noise pdf
signal pdf

Fig. 2. By comparing the signal and noise histograms, we identify

the amplitude range over which the noise pdf is dominant

We select ε1 (≤ 0) and ε2 (≥ 0), such that

fs(ε1) = fn(ε1)
fs(ε2) = fn(ε2).

Here, fs(x) and fn(x) denote the PDF of the signal and the

noise, respectively, at value x. We will avoid levels in the

range [ε1,ε2], (Fig. 2) for computing LCR.

4. For every sample, x[n], and level ηj , a level crossing �(j, n)
has occurred between x[n − 1] and x[n], if :

(x[n] − ηj)(x[n − 1] − ηj) < 0
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�(j, n) =

j
1 if above condition is true

0 otherwise

5. We define the level crossing rate L(j, n) for each level ηj , at

sample point n as:

L(j, n) =

n+∆X
m=n−∆

�(j, m) (1)

The interval ∆ is chosen such that 2∆ ≈ one pitch period.

Here, no accurate pitch estimation is required. E.g. for a
female voice, the pitch is in the range 200-300 Hz. For a

signal sampled at 16KHz, 1 pitch period will correspond to

80-53 samples. We have computed level crossings, over an

interval of 100 samples (more than 1 pitch period).

6. From the 2D representation of LCR L(j, n), we can obtain
the average level crossing rate E[n] over the ensemble of all

levels:

E[n] =
JX

j=1

L(j, n) (2)

Further, we can smooth the average level crossing rate using

either a linear or a non-linear filter. A simple moving average

filter over E[n] can be defined as:

Ē[n] =

100X
m=−100

E[n − m] (3)

7. Once the vector Ē[n] is obtained, we pick its significant

valleys and thus, estimate the number of segments. For

picking the valleys, the following speech properties are used:
a)Minimum segment duration = 12 ms

b)A valley must serve as a local minimum within a 20

ms interval. From Ē[n] plots, we observed that phonemic

changes can occur at points of significant change in the slope
of Ē[n], which may not be pure valleys. We set a tolerance

limit tol to relax the selection criterion for valleys.

If Ē[n] > (1 + tol).(Ē[ni]) then x[n] is not a valley. Here,

ni is any point in the 20 ms interval,having n as its central
point. We used tol = 0.05. Higher values of tol will cause

false insertions, in a single high energy or high frequency

region,which may have high Ē[n], with some abrupt edges

in Ē[n] curve.

3. EXPERIMENTS AND RESULTS

It was shown in [7] that MFCC parameters provide the

most robust feature for segmentation. To compute MFCC (16

MFCC coefficients per frame), we have used an analysis window

length of 20 ms, and window shift of 10 ms. To compare the
performance of ALCR based segmentation, we have chosen two

spectral domain methods:

(1)ML segmentation, using MFCC with a symmetric lifter

(1 + Asin1/2(πn/L)), (A=4, L=MFCC dimension=16) pro-
posed in [7]

(2)Spectral Transition Measure (STM) using the feature vector

and lifter combination in (2).

The experiments have been conducted on 100 sentences

(Fs=16KHz) - from TIMIT database- from 10 female speakers.

The speech data has a SNR of 36dB, on an average, with respect
to background noise in silence regions. We repeat the experiment

with noisy speech with SNR of 20, 10 and 5 dB. For ML

segmentation (without any duration constraint) using MFCC as

the feature vector, we have assumed the same no. of segments as
provided by TIMIT database. STM requires a global thresholding;

to circumvent the problem, we have used STM with the same no.

of segments, as given by TIMIT, and only those no. of largest

peaks are detected for segmentation. If the obtained boundary is
within ±20 ms of a TIMIT boundary, we call it a ‘match’(M).

If two consecutive boundaries match, we count it as a ‘segment

match’(S). Also, insertions(I) and deletions(D) are noted, keeping

the ±20 ms constraint.

Method SNR (dB) M% I% D% S%

ML 36 80.8 18.8 19.2 50.8

STM 36 70.1 25.2 29.9 34.1

U-LCR 36 78.6 22.8 21.4 44.2

NU-LCR 36 79.8 24.2 20.2 44.5

NU-LCR1 36 84.4 33.2 15.6 45.0

ML 20 78.8 20.8 21.2 46.8

STM 20 68.1 27.1 31.9 31.5

U-LCR 20 72.0 22.9 28.0 40.2

NU-LCR 20 77.6 25.7 22.4 43.2

NU-LCR1 20 79.0 36.0 21.0 39.8

ML 10 73.3 23.8 26.7 41.6

STM 10 65.0 30.2 35.0 28.0

U-LCR 10 69.7 24.9 30.3 37.9

NU-LCR 10 74.2 29.9 25.8 42.4

NU-LCR1 10 77.9 51.0 22.1 27.8

ML 5 70.6 26.4 29.4 38.5

STM 5 63.1 32.2 36.9 27.4

U-LCR 5 67.1 30.7 32.9 36.9

NU-LCR 5 71.2 39.9 28.8 37.7

NU-LCR1 5 65.9 55.0 34.1 23.8

Table 1. Segmentation performance of ALCR and other spectral

domain methods

U-LCR: ALCR method with uniform level allocation

NU-LCR: ALCR method with non-uniform level allocation
(Both U-LCR and NU-LCR employ noise robustness scheme)

NU-LCR1: NU-LCR method without the noise robustness scheme

We see that segmentation accuracy of ALCR method is higher
than STM, but lower than that of ML. It may be noted that ALCR

technique does not use the number of segments information,

unlike ML or STM, and yet provides a performance comparable

to the best, i.e.ML. The performance is steady even at a low SNR

of 5 dB. Also, the importance of the noise robustness scheme is
evident by comparing the results of NU-LCR and NU-LCR1. NU-

LCR1 shows higher false insertions which increases drastically at

low SNR. For lower SNR, since Ē[n] increases, due to increased

level crossings near 0 (as evident from Laplacian pdf of signal
and also due to noise), the Ē[n] contour peaks up even at points

of no distinct phoneme change and spurious valleys get detected.

While comparing U-LCR and NU-LCR schemes, we see that

match accuracy is more for NU-LCR, but that comes at the cost
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of higher insertion errors, which become more prominent at lower

SNR. In NU-LCR, we allocate more levels in the ranges [λ1, λ2]
and [λ3, λ4], and as inter-level spacing is reduced, extra level
crossings may be detected due to noise. In U-LCR, as levels are

placed uniformly throughout, the susceptibility to noise is reduced.

We present (in Fig. 3-4), the spectrogram and time-
domain plot of a signal (‘sa1.wav’), along with the Ē[n] of the

signal, which is called MSALCR (‘Mean smoothed ALCR’) in the

plots. The figures show the analysis for two parts of the sentence,

1-2 sec and 2-3 sec, separately. Each figure consists of 3 plots,
which are as follows:

upper plot: spectrogram of the signal, with TIMIT labels superim-

posed

middle plot: Ē[n] of the signal, with ALCR boundaries marked
lower plot: signal waveform, with ALCR boundaries shown
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Fig. 3. Comparison of manual and ALCR boundaries over 1-2 sec

of signal

As can be seen, the temporal changes in the signal are clearly

identifiable through the ALCR method, and the segments are
similar to those obtained through a visual inspection of the signal

waveform. Vowels and diphthongs have high energy, while

fricatives have higher frequency content. Nasals and stops have

low energy. Therefore, based on ALCR, these phonemes can be
easily segmented. E.g. stop consonants get picked up by ALCR

method (/d/1.05 s, /d/1.22 s, /k/ 1.49 s, /g/2.08 s) . Due to the

noise robustness scheme, level crossings near 0 are ignored and

so we miss out on detection of closures. Signal variations within

a phonemic segment may give rise to insertion errors(/s/1.6 s,
/s/2.3 s). In ‘greasy’ (2.05-2.45 sec), /g/r/iy/s/iy/, the /r/, which is

part of a consonant cluster /g/r/, is missed. In ‘dark’ (1.25-1.45

s), /aa/ and /r/ have been merged into a single segment. Though a

labelled boundary exists for /r/, we hear /aa/r/ as a single unit itself.

4. CONCLUSIONS

We have presented an auditory processing motivated time-domain

segmentation technique, which performs as good as the best ML
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Fig. 4. Comparison of manual and ALCR boundaries over 2-3 sec

of signal

segmentation, that we had proposed earlier. Adaptive level al-

location and a noise robustness scheme have been incorporated

into this technique. A second pass approach is required to de-
tect those phoneme boundaries, which are not associated with a

marked change in the ALCR contour. The technique can be further

improved using non-linear processing techniques such as median

filtering and 2D analysis of level crossing information.
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