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ABSTRACT

In this paper, we present a joint time and frequency domain 

approach for pitch estimation of speech at a very low signal-to-

noise ratio (SNR). The kernel of this approach lies in 

introducing a new function for detecting the time-domain cue 

by modifying the circular average magnitude difference

function (CAMDF). By using the new function in conjunction

with the half-wave rectified version of the autocorrelation

function, the pitch-peak can be emphasized and the non-pitch

peaks suppressed. The proposed method not only alleviates the 

effect of falling valleys in the conventional average magnitude

difference function (AMDF) but also overcomes the difficulty

of the basic CAMDF technique in estimating a pitch period of

larger than one-half of the frame length. To guarantee a robust 

pitch detection in noisy speech, a priori frequency-domain

estimate of the dominant pitch-harmonic (DH) is extracted as an

additional cue and is utilized to optimally match the pitch-peak

in time-domain. The proposed approach is simulated using the 

Keele reference database. It is shown that the proposed method 

using a joint time and frequency domain cues is able to give a

superior accuracy relative to some of the existing methods even

at a very low SNR of 10 dB.

1. INTRODUCTION

Pitch period or fundamental frequency of speech is the primary

acoustic cue for sentence intonation and lexical stress and

therefore, is crucial to phoneme identification in tonal languages.

Pitch related prosodic features have axiomatic importance in

automatic speech recognition and understanding (ASRU) systems.

In most low-rate voice coders, accurate pitch estimation is a pre-

requisite for reconstructing a good-quality speech. Some medium

rate coders use pitch to reduce the transmission rate without

degrading the speech quality. Pitch patterns also have extensive

applications in speech articulation training for the deaf.

Reliability and accuracy have been the major focus of many

pitch detection methods for noisy speech. The autocorrelation

function (ACF) based methods [1] exhibit a better performance

against noise for female’s voice relative to male’s. The average

magnitude difference function (AMDF) based approaches [2] 

suffer from a serious pitch doubling problem in noisy

environments. Since the minimum valleys of AMDF decrease, the

weighted autocorrelation (WAC) method [3] using the inverse

AMDF fails to suppress the erroneous peaks at a very low SNR. 

Even though the circular AMDF (CAMDF) [4] overcomes the

defects of AMDF, it cannot be applied for speeches with pitch

period larger than one-half of the frame length. Also, its

performance for noisy speech is found unsatisfactory. The

shortcomings of the AMDF technique are also inherent to the 

recently reported sinusoidal ACF method [5] as it maximizes a cost

function involvingAMDF to find the pitch of a noisy speech.

In this paper, we present an effective time and frequency 

domain pitch estimation method for noisy speech. The proposed 

method exploits both time and frequency-domain cues to estimate

the pitch period, in which the time-domain cue is acquired by

combining a new function obtained from the modified CAMDF 

with the half-wave rectified ACF while the frequency-domain cue

is obtained by estimating the dominant pitch-harmonic from the 

cosine-modeled ACF. In attaining the time-domain cue, an

adaptive weighting window is also employed to reduce the

possibility of half- and double-pitch errors. The proposed strategy

of integrating the time and frequency-domain information results 

in a very accurate pitch detection from heavily noise-corrupted

speech signals.

2. PROBLEM FORMULATION

The ACF of noisy speech y(n) = x(n)+ v(n) can be written as 
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where xx( ) is the ACF of the clean speech x(n) as given by
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and v
2 represents the variance of the zero-mean white Gaussian

noise v(n). In (2), N is the speech frame size used. If x(n) is 

periodic with period T, and x(n) and v(n) are truly uncorrelated,

(1) will give a robust pitch estimation at the second maximum 

peak of yy( ) corresponding to  = T. However, x(n) and v(n) may

not be strictly uncorrelated in practice. Therefore, a variation of

correlation analysis, AMDF of y(n) given by
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has been proposed for pitch estimation in the presence of noise

[2]. Note that the number of items summed in ( ) reduces with 

the increase of the lag . The global minimum or valley of ( )

often occurs at a higher multiple of T. Since ( ) produces a

valley while yy( ) provides a peak, it has been suggested in [3]

that yy( ) be weighted by the reciprocal of ( ) in order to 

emphasize the peaks at the speech periodicity T. Due to the falling

trend of the valleys of ( ), those peaks other than the pitch-peak

become more prominent. This detrimental effect misguides pitch

I - 3890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



estimation especially at a low SNR. As such, the circular AMDF

(CAMDF) of y(n) that is given by
1

0

)()),(mod()(
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n

nyNny   (4) 

has been proposed in [4] to improve the basic AMDF. Although

the CAMDF is expected to provide a minimum valley at T, it

gives a function that is unique up to one-half of the frame size. 

Hence, pitch period larger than N/2 samples cannot be estimated

using an N-sample frame.

In the next section, we will propose a new pitch estimation

approach that prevents the falling phenomenon of valleys as well 

as overcomes the aforementioned deficiency of CAMDF

technique. The key to the proposed method is to develop a 

function for the detection of time-domain cue by using an

improved CAMDF along with the half-wave rectified ACF. To 

minimize the pitch estimation error in noise, an additional

frequency-domain cue obtained from the DH of the cosine model 

of ACF is combined with the time-domain cue. A pre-estimate of

the DH is extracted from FFT domain.

  3. PROPOSED METHOD

3.1 Pre-processing

The noisy speech, y(n), is first converted to frequency domain by

using the discrete cosine transform (DCT). The DCT coefficients

corresponding to the first formant range for most male and female 

speakers are then retained and converted back using the inverse

DCT to time-domain signal. Thus, the pre-filtered noisy speech

(PFNS), denoted as y (n), is considered to be cleaner than y(n),

since the influence of other formants on pitch estimation has been

removed  [6].

3.2 Signal-conditioning for time-domain pitch-cue

Let y W (n) be the rectangular-windowed PFNS signal.  Analyzing

the characteristics of ( ) given by (3), the basic window size (N)

is added by max up to N + max to define a modified CAMDF 

(MCAMDF) where max is the preset maximum pitch-lag for

female or male speakers. The MCAMDF is proposed as 
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here, m = mod (n + , N + max) representing the modulo

operation of (n +  ) with respect to (N + max), and = N +

max  1. ( ) has the symmetry property around s = ( + 1)/2.

Thus, we need to calculate ( ) only with [0, s]. Similar to

( ), ( ) is expected to maintain deep valleys at  = T with 0

T s (  = 0, 1, 2….). In contrast with ( ), ( ) depends

actually on two different speech frames. For each value of , all

the speech samples in consecutive two frames are used twice to

compute (5). Since the number of terms summed is a constant, i.e., 

 + 1,at all lags, peaks of ( ) remain in the same level preventing

its valleys from falling. As N s N/2 and s max, ( ) also

overcomes the constraint of half-frame (N/2) symmetric property 

of ( ) in (4). Since pitch usually changes slowly with time in a

voiced section of the speech [6], using a larger window for ( )

will not potentially increase the pitch estimation error.

We want to exploit the peaks instead of valleys for pitch

estimation. Hence we define a new signal-conditioned function as
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where max = max{ ( )} for 0 s and max s is the index of

max. Note that the above defined reshaped MCAMDF, ( ), is

always positive but it reverses the peaks and valleys of ( ). In the

range of 0 s, the deepness of the valleys of ( ) decreases

with the increasing . Hence, ( ) has a relatively sharp front

peaks compared to the rear ones.

We have found that ( ) and the ACF of basic windowed

PFNS, yy ( ), up to   = s have very similar characteristics and

share the same periodicity in noise–free case. In a noisy

environment, we propose to combine ( ) with a half-wave

rectified yy ( ) denoted as ( ) in order to enhance the pitch-

peak. To this end, ( ) and ( ) are each first raised by a power

of three, represented by ( ) and ( ), respectively, which are

then multiplied giving

( ) = ( ) ( ) (7)

This power-of-three and product operation is able to reinforce the

larger peaks reasonably. Since, the noise components included in

( ) and ( ), are uncorrelated and behave independently, after

the nonlinear computation, the desired pitch-harmonic-peaks can 

be enhanced and the non-harmonic peaks as well as the unwanted 

noise component suppressed. In order to reduce the possibility of

half and double-pitch errors, we further modify ( ) as

)()()( w   (8) 

where w( ) = wl( )wa( ) represents a two-wing window. The first

part wl( ) is a small-delay weighting function that favors half-

pitch lags for males, as given by

2log
)(lw  (9) 

where = 0.85 is a tuning parameter. The second part wa( ) of the

two-wing is defined as 

a
Lolda pw 2log
)()(   (10)

where old represents the median-filtered pitch-lag of the previous

voiced speech frames and pL the lower pitch search limit. The

weighting function wa( ) is centered around old that is updated 

only for strongly voiced frames. The weighting function depends

also on the number ( ) of consecutive unvoiced speech frames

before the current frame as determined by the value of a,

namely, a = 0.85 if  6, a = 0.95 if 6 10, or a = 0.99 if

 10. Using this scheme, wa( ) is attenuated after unvoiced or

silence periods and therefore, the estimated pitch is not biased

towards the old-pitch.

The above-proposed time-domain method is able to improve 

the conventional pitch detection techniques to a considerable

degree. However, it cannot completely avoid the double and half-

pitch problem, especially in weakly voiced sections of a noisy

speech. In what follows, we will make use of the frequency-

domain information to enhance the robustness of pitch estimation. 

3.3 A priori cue: for estimation of dominant pitch-harmonic

The harmonic sinusoidal speech model for a strongly-voiced

frame of clean-speech, x(n), can be represented by

0

1

,)(exp)( knjbnx k

r

k

kkk
  (11)

where bk is the envelope of the vocal tract and k the k-th

harmonic of the pitch frequency 0 = 2  f0/fs  in radians/sec with f0

and fs being the pitch frequency and the sampling frequency,
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respectively. From (11), a cosine model (CM) for ACF of x(n) can

be derived as 

0
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where, k is a constant ( k = c/2, c = bk

2

 ). The power spectrum of 

x(n) is expressed as
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This discrete line spectrum can be viewed as sampling of a

spectral envelope corresponding to the transfer function of the 

vocal tract, with the sampling points governed by the pitch of the

speaker. Hence, unlike the conventional sinusoidal model-based

approaches that calculate all the harmonics, we intend to

determine the dominant harmonic (DH). Instead of using yy ( )

directly, a close approximation of Rxx( ) is computed through one

constituent function of the CM model, R1( ).The total squared

error (i)( 1) between yy ( ) and R1
(i)( ) can be written as 

2
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where, R1
(i)( ) = 1

(i)cos( 1
(i) ) and the iteration index ‘(i)’

depends on the number of 1’s used in (14) for optimization. The

FFT coefficient (FC) of PFNS in the frame under analysis which 

corresponds to the largest energy provides the best probable cue 

for a pitch-harmonic. Thus, all the ’s in the entire pitch domain

are not encouraged to use as 1. It is more appropriate to perform

a search only in the neighborhood of a priori estimate of that

corresponds to the FC having maximum amplitude in the FFT 

domain. Then the optimum 1 = 1
(i) can be found at the i-th

iteration for which (i)( 1) is minimized in the least-square sense.

Due to this indirect noise compensation from all lags of yy ( ), a

quite accurate estimation of the DH (fd = 1/2 ) can be obtained

from the best matched R1( ).

3.4 Combination of time-frequency domain cues 

Since 1 = k 0, DH (fd) can be reasonably used to estimate the

pitch period, T. According to the autoregressive model of speech

production, the driving function to the vocal tract is a quasi-

periodic impulse sequence for voiced sound. Hence we are

motivated to use an impulse train I(n, ) [5] of length s

containing a fixed number ( ) of unit impulses to weight the

function, ( ), proposed in (8). The period of the impulse train

(Ti) is varied iteratively where Ti = Td, Td = 1/fd.,  is a nonzero

positive scaling integer. For a particular value of , I(n, ) is

expressed as 

sd nTnnI ,.....,2,1,0,)(),(
1

0

  (15)

where, (n) is the Kronecker delta function. Finally, the inner

product of )(I and is taken as a target function,

( ) = I( )( )T (16)

where = [ (0) (1) (2) … ( s 1)] and I( ) = [ I(0, )

I(1, )   … I( s 1, )]. The target function ( ) is maximized by

varying . Since, ( ) is expected to exhibit strong peaks at

integer multiples of T, ( ) will be maximized when Ti closely

matches with T. The value of  corresponding to the maximum of 

( ), denoted by m, is used to estimate the desired pitch period as 

Test = m Td. f0 is calculated by inverse operation of Test.

4.  RESULTS AND PERFORMANCE COMPARISON 

The performance of the proposed method is evaluated using the

Keele reference database [7]. This database provides a reference

pitch obtained from a simultaneously recorded laryngograph trace 

as “ground” truth. The pitch values are provided at a frame rate of

100 Hz with 25.6 ms window. Unvoiced frames are assigned with

zero pitch values, and uncertain frames are filled with negative

values. The data sequence consists of a phonetically balanced text, 

“The North Wind Story” of about 35 seconds, read by 5 mature

male and 5 mature female speakers. The Keele database is studio

quality, sampled at 20 kHz with 16-bit resolution. In order to use 

this database for performance evaluation, the same analysis

parameters (frame rate and basic window size) are chosen in the 

proposed method. For each voiced frame, DH was searched with a

scanning resolution of 0.001. The number of unit impulses (  2)

in the impulse train must be kept constant for a particular speaker

depending on the value of max. The parameter in (15) is 

restricted by ( 1) Td ( s 1). Simulations are performed for 

both clean speech (very large SNR) and noisy speech with an SNR 

varying from –10 dB to 30 dB at a 5 dB increase.

 Similar to [8], only the “clearly voiced” reference frames in

the Keele database are used for performance evaluation.

According to Rabiner [1], the gross error rate (GER) is measured 

as the percentage of the pitch period estimation errors that are 

greater than 1 ms in their absolute values. Otherwise, the error is

termed as the “fine pitch error (FPE)” measured by its mean

(mFPE) and the standard deviation ( FPE). Root-mean-square-error

(RMSE) of the voiced region is also used in this paper to quantify

the pitch detection accuracy. The “global” error is calculated

considering all five male (or all five female) speakers.

As summarized in Table 1, the proposed method performs 

equivalently well for clean speech in comparison to the methods in 

[8] using the same Keele database. From Fig. 1, it is seen that the

global GER [%] and RMSE [Hz] of the proposed algorithm is

significantly superior for both female and male speakers at all

SNR levels ranging from –10 dB to 30 dB and in clean speech

(indicated as dB SNR) in comparison to original AMDF [2],

WAC [3] as well as the basic CAMDF [4] methods. It is observed

from Table 2 that for both the female and male speakers, the

global mFPE [Hz] and FPE [Hz] of the proposed method are, within

an acceptable limit, consistently competitive relative to the

methods mentioned above both at –10 dB and 10 dB. Fig 2. shows

a comparatively smooth pitch contour of a male utterance obtained

from the proposed algorithm when SNR = –10 dB. The double and

half-pitch errors have been significantly reduced as a result of

using an adaptive weighting window in the proposed pitch

detection method. This implies that if the precision is not a major

concern, the post-processing of pitch contours using a 5-tap 

median filter as required in the conventional pitch estimation

methods can be avoided so as to reduce the delay for real-time

applications.
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Table 1. Performance comparison of proposed method versus 

Xwaves [8] and DLFT [8] in clean speech.

Method GER

[%]

mFPE

[Hz]
FPE

[Hz]

RMSE

[Hz]

Xwaves 1.74 3.81 15.52 15.98

DLFT 3.24 4.61 15.58 16.25

Proposed

(Female)

0.68 4.26 4.37 14.15

Proposed

(Male)

1.99 2.29 2.58 8.85

Proposed

(overall)

1.32 3.30 3.76 11.86

Table 2. Performance comparison of different methods in terms of 

global mFPE [Hz] and global FPE [Hz] (in brackets).

–10 dB 10 dB Method

Male Female Male Female

Proposed 3.07

(3.14)

6.23

(7.26)

2.16

(2.15)

4.34

(4.56)

WAC 3.31

(3.41)

8.32

(8.85)

2.22

(2.20)

5.01

(4.48)

CAMDF 3.37

(3.23)

7.71

(7.86)

2.33

(2.19)

4.94

(4.61)

AMDF 2.28

(1.93)

6.48

(5.94)

2.02

(1.87)

5.03

(4.25)

5. CONCLUSION

In this paper, we have proposed a new pitch detection algorithm

using both time-domain and frequency-domain cues. A pitch

detection function has been developed by combining the modified

version of CAMDF and the half-wave rectified ACF in order to

enhance the pitch- peak and suppress the non-pitch peaks. The 

new time-domain function is also able to estimate a larger pitch

period compared to the existing CAMDF. A pre-estimate of the

frequency-domain pitch cue has also been used to overcome the

double and half-pitch problem of the conventional methods and to 

improve the robustness of the proposed pitch detection algorithm 

in noisy speech. Simulation results have shown that the proposed 

method significantly outperforms the recently reported correlation

and AMDF based approaches at a very low SNR level.
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