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ABSTRACT

A novel Bayesian model-based non-intrusive speech quality eval-
uation (BM-NiSQE) algorithm is presented in this paper. The pro-
posed BM-NiSQE algorithm employs a statistical model approach
and Bayesian inference to estimate the speech quality only using
the output signal of the system under test. In the proposed algo-
rithm, the speech features are extracted by the perceptual spectral
analysis. Gaussian mixture density hidden Markov models (GMD-
HMMs) are exploited to characterize different speech quality cate-
gories, which take into account not only the temporal variations of
speech signal but also the spectral statistical characteristics in the
perception domain. Based on the trained GMD-HMMs, the pre-
diction of speech quality is carried out by the Bayesian inference
and minimum mean square error (MMSE) estimation. Preliminary
experimental results show that the predicted results of the proposed
algorithm correlate well with the subjective quality scores.

1. INTRODUCTION

One of the most important criteria for the performance of com-
pression and transmission technologies in speech communication
systems is subjective speech quality, i.e., the users’ perception of
the quality of the received signals. The widely used subjective
speech quality testing method is the opinion rating scheme as de-
fined in the ITU-T Recommendation P.800 [1]. The subjective
speech quality is evaluated by an absolute category rating (ACR)
scale in which the quality is represented by five grades - excel-
lent(5), good(4), fair(3), poor(2), and bad(1). Typically, the ratings
are collected from listeners and the arithmetic mean of these scores
is calculated to form the mean opinion score (MOS). While sub-
jective opinions of speech quality are preferred as the most trust-
worthy criterion for speech quality evaluation, they are also time-
consuming and expensive. Therefore, objective quality evaluation
methods for predicting subjective scores of speech quality from
physical parameters are desirable.

In the past two decades, objective quality evaluation has re-
ceived considerable attention and is still an active research topic
[2, 3, 4, 5, 6]. A majority of these objective methods are based on
input/output comparisons, i.e., intrusive methods, which estimate
the speech quality by measuring the “distortion” between the input
and output signals, and mapping the distortion values to the pre-
dicted quality metric. But in some applications, a reference signal
might not be available for an input/output comparison, e.g., wire-
less communications, voice over IP network, and hearing aids. In
such cases, an attractive alternative approach is to assess speech
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quality using only the output signal, i.e., a non-intrusive speech
quality evaluation [7]. An effective non-intrusive quality measure
will be of significant importance to applications where an input
signal is not readily available, such as the performance evaluation
of hearing aids [8] and non-intrusive performance monitoring of
communication systems[9]. Non-intrusive evaluation techniques
recently described in the literature [10, 11], however, are mainly
based on comparing the signal under test to an artificial reference
signal representing the closest match from an appropriately formu-
lated codebook. In this paper, we propose a novel non-intrusive
evaluation algorithm based on a statistical model approach and
Bayesian inference which does not require an artificial reference
or codebook and operates on just the signal under test. The pro-
posed algorithm uses pattern classification methodology to esti-
mate speech quality, which is a completely different strategy in
dealing with speech quality evaluation from the existing methods,
such as the MPSDD algorithm [5]. In addition, the approach pre-
sented in this paper provides discrete speech quality ratings (in line
with the subjective data) rather than a continuous speech quality
variable.

It is well-known that speech signal not only provides the words
or message being pronounced, but also gives information of sound
quality perceived by the listeners as stated in a subjective listening
test [1]. While speech recognition focuses on understanding the
underlying text and information in the speech signal, speech qual-
ity evaluation is concerned with extracting the quality information
from the sound signals. Success in correctly predicting subjective
speech quality depends on extracting and modelling the character-
istics of the speech signal that can effectively distinguish between
different speech quality categories, such as the categories of the
MOS scale. The proposed BM-NiSQE algorithm exploits percep-
tual spectral analysis to extract the speech features, uses GMD-
HMMs to model the characteristics of different quality categories,
and applies Bayesian inference and MMSE estimation to predict
the subjective quality scores. The use of GMD-HMMs is moti-
vated by the fact that the GMD-HMMs have a greater ability to
capture both the temporal and spectral variabilities of speech sig-
nal in the perception domain.

2. OUTLINE OF THE BM-NISQE ALGORITHM

The block diagram of the proposed BM-NiSQE algorithm is shown
in Fig.1. We assume that the subjective quality scores are classified
into Q categories in our study. The subjective quality score associ-
ated with each quality category is denoted by Y (q), q = 1, 2, ..., Q.
The observation features representing the q-th quality category, de-
noted by O(q), are extracted by the perceptual spectral analysis (a
detailed description is given in Section III). The observation fea-
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Fig. 1. The block diagram of the BM-NiSQE algorithm

tures O(q) are characterized by a GMD-HMM λ(q), q = 1...Q.
The predicted subjective quality scores Ŷ can be estimated using
the minimum mean square error (MMSE) criterion.

2.1. MMSE estimation of subjective quality scores

The aim of the BM-NiSQE algorithm is to minimize the mean
squared error between the predicted MOS values Ŷ and the true
MOS values Y , i.e.,

E[(Ŷ − Y )2|O] → min, (1)

where O is the observation features of the speech under test. Ob-
viously, the solution of Eq.(1) is a conditional expectation as

Ŷ = E[Y |O] =

∫
Y p(Y |O)dY. (2)

Since there are Q quality categories, Eq.(2) becomes

Ŷ = E[Y (q)|O] =

Q∑
q=1

Y (q)p(Y (q)|O). (3)

2.2. Bayesian Inference

Assuming that the speech signal of the i-th quality category is
characterized by the GMD-HMM, λ(i), we have

p(Y (q)|O) =

Q∑
i=1

p(Y (q)|λ(i))p(λ(i)|O). (4)

Using Bayesian inference, the posterior probability can be refor-
mulated by the prior probability, p(λ(i)), and the likelihood, p(O|λ(i)),
as below,

p(Y (q)|O) =

Q∑
i=1

p(Y (q)|λ(i))
p(O|λ(i))p(λ(i))∑Q

m=1 p(O|λ(m))p(λ(m))
. (5)

Since the speech signal of the q-th quality category is associated
with the corresponding statistical model, we have

p(Y (q)|λ(i)) =

{
1, i = q

0, i �= q
(6)

Consequently, the following formula for the posterior probability
is obtained

p(Y (q)|O) =
p(O|λ(q))p(λ(q))∑Q

m=1 p(O|λ(m))p(λ(m))
(7)

2.3. Estimation of the likelihood and prior probability

Obviously, the prior probability p(λ(q)) can be estimated from the
training data set, i.e., the probability of each existing quality cat-
egory. As for the likelihood p(O|λ(q)), due to the high dimen-
sionality of the observation sequence O, it is not practical to es-
timate the joint conditional probability directly from the speech
signal, e.g. using a histogram method. However, using a para-
metric model, such as a GMD-HMM, makes estimation from data
feasible. The problem of estimating p(O|λ(q)) is replaced by the
problem of estimating the GMD-HMM parameters. The descrip-
tion of the GMD-HMMs employed by the BM-NiSQE algorithm
is given in the Setion IV. After obtaining the likelihood and prior
probability, the posterior probability p(Y (q)|O) can be calculated.
Subsequently, the predicted subjective quality score can be esti-
mated in terms of Eq.(3).

3. FEATURE EXTRACTION BY PERCEPTUAL
SPECTRAL ANALYSIS

Previous research has shown that the time-frequency distribution
of the speech signal is useful for quality evaluation[2], although
there are no specific features to distinguish different speech qual-
ity categories. This is because the time-frequency distribution re-
flects different vocal tract configurations which produce the speech
signal associated corresponding speech quality categories. Re-
cent studies have found speech features combined with percep-
tual models of human’s auditory system to be more effective in
speech quality evaluation [4, 5, 6]. In the BM-NiSQE algorithm,
we employ perceptual spectral features derived from speech time-
frequency distribution to represent the quality characteristics of
speech signal. The perceptual spectral analysis is performed by
time-frequency mapping and transformation to the perception do-
main. The block diagram of the perceptual spectral analysis is
shown in Fig.2. Typically, the input speech signal with an 8 kHz
sampling frequency is first segmented into frames of 32 ms with
an overlap of 50%. Each frame is then transformed to the fre-
quency domain using a Hanning window and a short term FFT. The
transformation to perception domain, i.e., Bark domain, is done
by grouping the spectral coefficients into critical Bark bands. The
perceptual spectral analysis is formulated in the following steps.
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Fig. 2. The block diagram of the perceptual spectral analysis
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3.1. Time-frequency mapping

The mapping from time domain to time-frequency domain is im-
plemented by a short-term Fourier transform with a Hanning win-
dow resulting in a time-frequency representation with a constant
resolution in both time and frequency domain. Let the t-th frame
of speech signal be denoted by samples x(t, l) with l running from
0 to L − 1, where t = 1, 2, ..., T . The signal x(t, l) is windowed
by a Hanning window, i.e.,

xw(t, l) = h(l)x(t, l), (8)

where h(l) is the windowing function as

h(l) = 0.5

(
1 − cos

(
2πl

L

))
, 0 ≤ l ≤ L − 1. (9)

The Fast Fourier transform (FFT) is performed on xw(t, l)
with L = 256 samples. The real and imaginary components are
squared and added to get the short-term spectral power density
P (t, f), i.e.,

P (t, f) = (Re Xw(t, f))2 + (Im Xw(t, f))2 , (10)

where f is frequency scale.

3.2. Transform to perception domain

The spectral power density P (t, f) is warped from the Hertz scale
to the critical band scale (i.e., Bark scale), leading to a perceptual
spectral density representation within each frame. P (t, f) is parti-
tioned into critical bands and the energies of each critical band are
added up. The conversion from frequency to Bark scale is

z = 7 · asinh(f/650). (11)

In order to improve the resolution of the perceptual spectral density
distribution, we chose an interval of 1

2
Bark scale. This leads to 29

critical bands covering 300 Hz - 4 kHz frequency. The energy in
each critical band is summed as follows.

O(t, z) =

bhz∑
v=blz

P (t, v), (12)

where blz and bhz are the lower and upper boundaries of criti-
cal band z, respectively. The grouped energies are denoted by
O(t, z), z = 1, 2, ..., 29. Each speech frame is therefore repre-
sented by a vector of 29 perceptual spectral features.

4. POSTERIOR PROBABILITY ESTIMATION BY
GMD-HMMS

In the BM-NiSQE algorithm, the joint conditional observation den-
sities p(O|λ(q)) (q = 1, 2, ..., Q) are estimated by GMD-HMMs.
There are Q such GMD-HMMs λ(q), where λ(q) = {π(q), A(q), B(q)}
denotes the set parameters of the q-th N -state GMD-HMM used
to characterize the q-th speech quality category, of which π(q) rep-
resents the initial state distribution, A(q) is the transition probabil-
ity matrix, and B(q) is the parameter vector composed of mixture
parameters B

(q)
i = {ω(q)

ik , µ
(q)
ik , σ

(q)
ik } for state i. The state obser-

vation probability density function (pdf) at state i is assumed to be
a mixture of multivariate Gaussian pdfs:

p(B
(q)
i ) =

K∑
k=1

ω
(q)
ik N (O; µ

(q)
ik , Σ

(q)
ik ) (13)

where O is the observed features, the set of mixture coefficients
ω

(q)
ik satisfy the constraint

∑K
k=1 ω

(q)
ik = 1, and N (O; µ

(q)
ik , Σ

(q)
ik )

is the k-th Gaussian mixture component with µ
(q)
ik being the D-

dimensional mean vector and Σ
(q)
ik being the D × D covariance

matrix, i.e.

N (O;µ
(q)
ik , Σ

(q)
ik ) =

1

(2π)D/2|Σ(q)
ik |1/2

×

exp

(
−

1

2
(O − µ

(q)
ik )′(Σ

(q)
ik )−1(O − µ

(q)
ik )

)
, (14)

where the apostrophe represents a transpose operation. For each
state i, the complete Gaussian mixture density is parameterized by
the mean vectors, covariance matrices and mixture weights from
all component densities. Also, it is assumed that all the state ob-
servation pdfs have the same number of mixture components. Cor-
respondingly, the q-th GMD-HMM can be represented the param-
eters collectively by the notation

λ(q) = {π(q), A(q), ω(q), µ(q), Σ(q)}, q = 1, ..., Q. (15)

Each speech quality category is represented by a GMD-HMM and
is referred to by the model λ(q).

The choice of GMD-HMMs is based on the attributes that
these models have been proven extremely useful in modelling pdfs
of speech signal [12]. The GMD-HMMs are capable of captur-
ing the time-frequency variabilities of the speech signal and repre-
senting the properties of general vocal tract configurations that are
quite useful for characterizing speech quality [7]. Furthermore, a
linear combination of GMD functions has a great ability to form
smooth approximations to arbitrarily-shaped densities.

The training of the parameters of the GMD-HMMs, i.e., π,A,
ω,µ and Σ, can be performed with the expectation-maximization
(EM) algorithm. A starting point for the iterative refinement of the
EM algorithm is determined by clustering the training data with
the K-means algorithm in our study. One critical factor in train-
ing a GMD-HMM is the selection of the order K of the Gaussian
mixture components and the order N of the hidden states. There
are no good theoretical means to guide one in either of these selec-
tions, so they are best determined experimentally for a given task.
An experimental examination of these factors is discussed in the
following Section V.

5. PERFORMANCE EVALUATION

A speech data set with different MOS subjective quality scores
was used to test the performance of the BM-NiSQE algorithm.
This speech data set consists of 128 MOS values, including five
modulated noise reference unit (MNRU) conditions (5-25 dB at 5
dB step) and different types of speech coders, such as ADPCM,
GSM, IS54, FS1016, LD-CELP and CELP. The correlation coef-
ficient (denoted by ρ) and standard error of estimate (denoted by
ε), defined in [2], were used to evaluate the performance. Three-
quarters of the data set was used as a training data set while the
remaining was used as a testing data set. Based on the original
categories of the MOS scale, we classified the experimental data
set into nine categories denoted by ξi, where {1 ≤ ξ1 < 1.25 ≤
ξ2 < 1.75 ≤ ξ3 < 2.25 ≤ ξ4 < 2.75 ≤ ξ5 < 3.25 ≤ ξ6 <
3.75 ≤ ξ7 < 4.25 ≤ ξ8 < 4.75 ≤ ξ9 ≤ 5}.

I - 387

➡ ➡



0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

 (
 ρ

 )

The Number of Hidden States ( N )
2 4 8 16 32 64

K = 1
K = 2
K = 4
K = 8
K = 16

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
ta

nd
ar

d 
E

rr
or

s 
( 

ε 
)

The Number of Hidden States ( N )
2 4 8 16 32 64

K = 1
K = 2
K = 4
K = 8
K = 16

Fig. 3. Investigation of the selection of the model orders in terms
of correlation coefficients and standard errors

5.1. Numerical computational issues

The BM-NiSQE algorithm was programmed in Matlab. In our
numerical computation, the smallest positive floating point num-
ber is approximately 2.225 × 10−308. With this precision, Equa-
tion (7) may sometimes cause numerical problems due to the term
p(O|λ(q)) which is significantly small and generally exceeds the
precision range, resulting in an underflow problem. A remedy for
this was to use a logarithmic value to calculate the joint condition
probability p(O|λ(q)) first and a scaling factor φ is then employed
to calculate the final posterior probability p(Y (q)|O) as follows:

p(Y (q)|O) =
10(log p(O|λ(q))−φ)p(λ(q))∑Q

m=1 10(log p(O|λ(m))−φ)p(λ(m))
(16)

where

φ = max
m

log p(O|λ(m)), m = 1, 2, ..., Q

5.2. Selection of the model orders

As indicated in Section IV, the selection of the orders of hidden
states and Gaussian mixture components is critical in the BM-
NiSQE algorithm. Choosing too low an order will produce a model
which does not accurately capture the distinguishing characteris-
tics of different quality categories. Choosing too high orders will
reduce performance when there are a large number of model pa-
rameters relative to the available training data and will also result
in excessive computational complexity both in training and test-
ing. To investigate the performance of the BM-NiSQE algorithm
with respect to the model orders, the following experiments were
conducted on the training data set. The GMD-HMMs with 2, 4,
8, 16, 32, 64 hidden states and 1, 2, 4, 8, 16 Gaussian compo-
nents were trained using the data set. Fig.3. shows the results of
the performance versus the selected orders in terms of the corre-
lation coefficients and standard errors. From the results, it can be
seen that the GMD-HMMs with 16 hidden states and 16 Gaussian
components attained the best performance, and that the correlation
coefficients reached 0.9386 with a standard error of 0.2922.

5.3. Results of the testing data

The experiments on the testing data were carried out by the GMD-
HMMs with K = 16 and N = 16. The correlation coefficients
between the predicted scores and the true MOS values attained
0.8962, and the standard error of prediction was 0.3974. These

results demonstrated the ability of the proposed BM-NiSQE algo-
rithm to predict speech quality scores without access to the input
speech signal. This compares favorably with the standard intrusive
speech quality measure, PESQ [3], which provides a correlation of
0.9265.

6. CONCLUSIONS

In this paper a novel Bayesian model based non-intrusive speech
quality evaluation algorithm is proposed. The proposed BM-NiSQE
algorithm is based on the perceptual spectral features, and applies
Bayesian inference and Gaussian mixture density hidden Markov
models to predict the subjective quality scores without any refer-
ence signal. Preliminary experimental results show that the pre-
dicted results of the proposed algorithm correlate well with the
subjective quality scores.
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