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ABSTRACT

A number of commonly used methods for estimating the exponent
parameter of a generalized Gaussian density (GGD) are reviewed,
described and compared. More importantly, focusing on the family
of entropy matching estimators (EMEs), a novel entropic expres-
sion with respect to higher-order moments of the modelled data is
proposed. This yields an elegant generalized entropy matching es-
timator (G-EME). Comparative experimental results illustrate the
high accuracy of the proposed estimator, for both light- and heavy-
tailed distributions, as well as speech data.

1. INTRODUCTION

Accurately modelling the unknown probability density functions
(PDFs) of data encountered in practical applications, can play an
important role towards designing more efficient modern signal pro-
cessing systems. To this end, the parametric family of densities
stemming from the generalized Gaussian density (GGD) model,
are known to approximate successfully a large number of differ-
ent signals, encompassing a wide range of statistical distributions.
In the context of image coding, GGD source modelling has been
used extensively to approximate the distributions associated with
discrete cosine transform (DCT) subband coefficients of natural
images [1]–[2] and [6], while its use has also been common in
video coding systems, as shown in [8] and [10]. Other useful ap-
plications of the GGD include, speech recognition and enhance-
ment, speech modelling [5] and more interestingly as suggested in
[7], blind source separation (BSS), where such a model has been
shown to provide, in most cases, a fairly accurate representation
of the unknown source distributions. Confronted with a set of un-
known distributions modelled as generalized Gaussian densities,
this contribution focuses on the estimation of the exponent param-
eter of the fitted GGD model, and hence on the complete statisti-
cal characterization of the given data. The main objective of our
investigation, is the application of such model to speech and ulti-
mately the estimation of first-order (univariate) probability density
functions, which can fully approximate such data. In this context,
past extensive experimental studies carried out in [3] and later in
[9], have provided strong evidence that, in general, speech signals
exhibit either Laplacian or generalized Gamma densities, respec-
tively.

This work is supported by the Engineering and Physical Sciences
Research Council of the U.K. and the University of Liverpool.

 −3  −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

p(
x)

10

2

1

0.6

Fig. 1. The probability density of the generalized Gaussian model plotted
for different values of the shape parameter ν = 0.6, 1, 2 and 10. All
distributions are normalized to unit variance (σ2 = 1) and have zero mean.

2. GENERALIZED GAUSSIAN PDF ESTIMATION

Normally, a large number of symmetric distributions may be suffi-
ciently approximated by employing the generalized Gaussian den-
sity (GGD) model. Thus, for a zero mean (µ = 0) signal x ∈ IR,
the PDF of a generalized Gaussian distribution with standard de-
viation σ is defined as:

px(x|ν, σ) =

»
ν · A(ν, σ)

2 · Γ (1/ν)

–
· exp (− [A(ν, σ) · |x|]ν) (1)

in which

A(ν, σ) = σ−1

vuuuuut
Γ

„
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Γ

„
1

ν

« (2)

where σ > 0 and Γ(·) defines the complete Gamma function given
by:

Γ(z) =

Z ∞

0

xz−1e−xdx, z > 0 (3)
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A(ν, σ) is a generalized measure of the variance and defines the
dispersion or scale of the distribution, while parameter ν describes
the exponential rate of decay and, in general, the shape or skew-
ness of the distribution px(x|ν, σ). Well-known special cases of
the GGD function include a Laplacian distribution (ν = 1) and
a standard Gaussian or normal distribution (ν = 2). In effect,
smaller values of the shape parameter ν correspond to heavier tails
and therefore to more peaked distributions. In the limiting cases,
when ν → +∞, px(x|ν, σ) converges to a uniform distribution,
whereas for ν → 0+, (1) approaches an impulse function. The
shape of the GGD for different values of the exponent parameter ν
is shown in Fig. 1.

2.1. Moment Matching Estimator (MME)

For all values of A(ν, σ) and ν, the rth-order absolute central mo-
ment for a generalized Gaussian distributed signal is given by:

E [|X|r] =

Z +∞

−∞
|x|r px(x|ν, σ)dx (4)

where E [ · ] represents the expectation operator. Substituting (1)
into (4), we can further show that the rth-order moments are es-
sentially defined as:

mr = E [|X|r] = A−r(ν, σ) ·

2
664

Γ

„
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ν
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Γ

„
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ν

«
3
775 , ν > 0 (5)

which, for example in the case of r = 2, yields the following:

m2 = E
ˆ|X|2˜

=
1

A2(ν, σ)
·

2
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Mallat first obtained a complete statistical description for GGD
modelled distributions, by simply matching the underlying mo-
ments of the data set with those of the assumed distribution [8].
Combining the ratio of the square of the first absolute moment m2

1

to the second-order moment m2, was shown to produce a consis-
tent moment matching estimator (MME) and furthermore an ana-
lytic expression for the unknown shape parameter ν. In this paper,
as in [10], the inverse of Mallat’s ratio, generally known as the
generalized Gaussian ratio function, is used instead, which in fact
is also a monotonically increasing function of ν :

M(ν) =
m2

m2
1

=

Γ

„
3

ν

«
· Γ

„
1

ν

«

Γ 2

„
2

ν

« (7)

further yielding the shape parameter estimate ν̂:

ν̂M � M−1

„
m2

m2
1

«
(8)

A numerical solution for ν̂ and hence the MME defined in (7) is
obtained by resorting to basic linear interpolation. We first sample
M(ν) with an accurate enough step (evidence shows that 10−3

ensures enough precision) and then invert with the aid of a look-
up table whose entries are the corresponding moment ratios for all
possible values of ν̂.

2.2. Entropy Matching Estimator (EME)

Another class of estimators, associated with entropy, has been re-
cently seen as a promising alternative for estimating the shape fac-
tor of a generalized Gaussian [1]. The entropy matching estimator
(EME) relies on matching the entropy of the GGD modelled dis-
tribution with that of a set of empirical data. Given a continuous
distribution px(x|ν, σ) obeying the GGD model, its differential
entropy is defined as [1]–[2]:

HGGD(ν, σ) = −
Z +∞

−∞
px(x|ν, σ) · log2 (px(x|ν, σ)) dx

= − log2

"
ν · A(ν, σ)

2 · Γ(1/ν)

#
+

1

ν ln 2
(9)

Associating the above with the entropy H(X) of the data obtained
at the output of an optimum entropy constrained uniform threshold
quantizer (UTQ) with step size ∆, yields H(X) = HGGD−log2 ∆

which after replacing HGGD with (9) and substituting A(ν, σ) for
(2) leads to:

H(X) − 1

2
log2

m2

∆2
= log2

"
2 ·Γ(1/ν)3/2

ν · Γ(3/ν)1/2

#
+

1

ν ln 2
(10)

with the right hand side depending solely on the shape factor ν.
A possible estimator for the assumed distribution having entropy
H(X) is hence realized by the monotonically increasing function:

H(ν) = H(X) − 1

2
log2

m2

∆2
(11)

Employing higher-order moments of the data, we can formulate a
rather more general expression for the entropy matching estimator
(EME) defined above. Based on the unique relation between the
second- and the rth-order absolute moments we may write:

m2 = E [|X|r] 2
r ·

2
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which when substituted in (10) yields a generalized entropic func-
tion with respect to every rth-order moment mr:

H(X)− 1

r
log2

mr

∆r
= log2

2
6664
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„
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„
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1

ν ln 2
(13)

from which it is now straightforward to derive the generalized en-
tropy matching estimator (G-EME):

Hr (ν) = H(X) − 1

r
log2

mr

∆r
(14)

which also includes (11) as a special case for r = 2 and further
provides the following shape parameter estimate:

ν̂Hr
� Hr

−1

8>>>>:H(X̂) − 1

r
log2

m̂r

∆r

9>>>>; (15)
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Fig. 2. Generalized rth-order entropic functions H1 (ν), H2 (ν), H3 (ν)
and H4 (ν) plotted against the GGD shape parameter ν ∈ [0, 4].

where, H(X̂) and m̂r = E
ˆ|X̂|r˜

, correspond to the entropy and
the rth-order absolute moment respectively, both evaluated from
actual (source) data. Fig. 2 depicts the standard generalized rth-
order entropic functions Hr (ν) plotted for several values of ν in
the interval [0, 4]. For 0 < ν ≤ 1, H1 (ν) is increasing mono-
tonically arriving at its theoretical maximum when ν = 1. On
the other hand, second- and third-order entropic functions H2 (ν)
and H3 (ν) attain their maximum values for ν = 2 and ν = 3 in-
stead, where H2 (2) = 2.04711 and H3 (3) = 1.8459, respectively.
Worth noting is also H4 (ν) with a maximum at H4 (4) = 1.7189.

2.3. Maximum Likelihood Estimator (MLE)

In general, for a sequence of data x = (x1, x2, . . . , xN ) of sample
size N , taken from a GGD with density pxi(xi|ν, σ), the maxi-
mum likelihood (ML) estimate is uniquely defined by the values of
parameters ν and σ that maximize the likelihood function:

L(x|ν, σ) = log

NY
i=1

pxi(xi|ν, σ) (16)

Assuming now that mean and variance are known, the ML solu-
tion for the unknown shape parameter is found by setting the par-
tial derivative of (16) with respect to ν equal to zero yielding the
likelihood equation as in [6]:

1+
ψ(1/ν)

ν
+

log

"
ν

N
·

NX
i=1

|xi|ν
#

ν
−

NX
i=1

|xi|ν log |xi|
NX

i=1

|xi|ν
= 0 (17)

which only holds true for ν > 0 and where ψ(·) = Γ′(·)/Γ(·) is
the digamma function defined as:

ψ(z) = −γ +

Z 1

0

(1 − xz−1) (1 − x)−1dx, z > 0 (18)

1As one would expect H2 (ν) attains its maximum at ν = 2, corre-
sponding to a Gaussian PDF, since from theory this should yield the largest
entropy among all distributions of the same variance.
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Fig. 3. The probability density function of the generalized Gaussian model
(ν = 0.7) fitted against the actual distribution of the given data.

where γ denotes the Euler constant. Solving (17) yields the ML
estimate of the shape parameter ν̂L , while differentiating (16) with
respect to the standard deviation σ for known ν can also provide
an ML estimate for the variance of the distribution. In our imple-
mentation, the starting value for the ML estimate ν̂L is calculated
using the method of bisection instead, which despite being slow, is
known to always converge to a unique solution for the root of (17).

3. EXPERIMENTAL RESULTS

3.1. GGD Modelling

This section attempts to measure the efficiency of the generalized
entropic estimator Hr (ν), by fitting a GGD model-based distri-
bution with the PDF of a set of given data. We first generate 100
different zero mean and unit variance generalized Gaussian2 i.i.d.
sequences for a single value of the shape parameter (ν = 0.7) and
a relative small number of samples (N = 103). Based on the gen-
eralized entropic estimator H3 (ν), obtained from (14) for r = 3,
we then calculate the underlying shape parameter of the distribu-
tion for all 100 sequences. The final value obtained after averag-
ing over all sequences, yields around ν̂H3

= 0.681, which clearly
demonstrates the extremely high accuracy of the entropy match-
ing method. The estimated PDF from the actual data and the fitted
GGD model are shown in Fig. 3. Note also that in this case, in-
version of the estimating function is carried out using a look-up
table of about 4 000 different values of ν in the range [0, 4] with
a step size of 10−3, while the differential entropy associated with
H3 (ν), is estimated according to a histogram-based method.

3.2. Speech Modelling

The source material used here, is taken from the TIMIT speech
corpus [4] and consists of a total of ten speech signals, where the

2 To simulate a GGD with parameters ν, σ, we first generate Gamma
distributed random variables Zi ∼ G(A(ν, σ)−ν , ν−1) and then obtain
the generalized Gaussian distributed variables Xi ∼ GG(ν, σ) using the
transformation Xi = Z1/ν .
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Frame → 50 ms 100 ms 200 ms

Speaker ↓ ν̂M ν̂H3
ν̂L ν̂M ν̂H3

ν̂L ν̂M ν̂H3
ν̂L

Male 1 1.489 1.233 1.404 1.197 1.051 1.118 0.870 0.815 0.789

Male 2 1.487 1.128 1.566 1.188 1.010 1.142 0.898 0.850 0.810

Male 3 1.314 1.041 1.246 1.048 0.928 0.974 0.804 0.767 0.730

Male 4 1.292 1.014 1.186 1.049 0.891 0.949 0.779 0.735 0.696

Male 5 1.348 1.120 1.322 1.052 0.965 0.976 0.820 0.803 0.726

Male 6 1.653 1.204 1.604 1.299 1.086 1.224 0.974 0.911 0.888

Male 7 1.337 1.079 1.255 1.091 0.960 1.020 0.834 0.793 0.777

Male 8 1.413 1.097 1.362 1.114 0.983 1.020 0.906 0.840 0.776

Female 1 1.418 1.059 1.475 1.021 0.894 0.915 0.758 0.728 0.616

Female 2 1.733 1.165 1.598 1.374 1.078 1.334 1.031 0.927 0.879

Table 1. GGD exponent parameter (ν) estimated using MME, EME and MLE for ten different speech signals.
Values obtained by averaging across different frames of speech data.

same sentence is uttered by 8 male and 2 female speakers. All
speech data are sampled at 16 KHz and have a duration ranging
from 2-4 s, since no special provision has been taken to re-adjust
the incurring silences for each speaker. In order to capture the non-
stationary characteristics of speech, the data from each speaker are
processed as a series of independent short-time frames. A num-
ber of different frame lengths is chosen, ranging from 50-200 ms,
while the overlapping between successive frames is set to 50% in
all cases. The aforementioned estimators for the exponent of the
GGD, are applied to each of the extracted frames of speech for all
different speakers. Next, a single value for the exponent parameter
uniquely characterizing the processed speech signal, is calculated
by averaging across all individual values of ν̂ estimated at each
frame. All values obtained are summarized in Table 1. Focusing
on short time frames, i.e., on frames of 50 and 100 ms length, it is
obvious that the estimated values for all speakers, predominantly
point to the conclusion that, in fact, speech follows a Laplacian dis-
tribution (ν = 1). This appears to be true for all estimators, yet it
becomes more evident in the case of the G-EME (when r = 3) and
especially for time frames of 100 ms. On the other hand, when the
chosen frame length is increased, the estimated exponent parame-
ter ν̂ rapidly decreases, clearly indicating that the PDF of speech
is significantly more heavy-tailed (ν ≤ 1) and thus more likely to
exhibit a near Gamma-like shape. The validity of these findings
is strongly corroborated in [5], where an extensive analysis has,
among others, revealed that the majority of short-data segments of
speech (≤ 100 ms) may, in general, be described most accurately
by a Laplacian distribution, whereas longer ones (≥ 200 ms), usu-
ally appear to exhibit significantly heavier-tailed densities.

4. CONCLUSIONS

We have derived an elegant generalized entropy matching estima-
tor (G-EME), which we have applied on the estimation of the expo-
nent parameter of a generalized Gaussian density (GGD). A num-
ber of experimental results, conducted with both generalized Gaus-
sian sequences and speech data, have illustrated the high efficiency

of the proposed entropy-based estimator even for small number of
samples. Some interesting conclusions, have also been drawn for
the distribution of speech signals, for which we have shown, that
in most cases, the GGD model appears to be an accurate enough
fit. In this context, however, our findings have also revealed that
the optimal statistical approximation for the PDF of speech is only
feasible under the interval at which the signal of interest remains
widely stationary, thus still remaining a largely open issue.
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