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ABSTRACT

An unsupervised approach for automatic speech prominence 

detection is proposed in this paper. The algorithm scores 

prominence by fusing different acoustic feature sets from the 

speech signal correlation envelope. In addition, we investigate 

part of speech (POS) as a linguistic correlate for speech 

prominence.  We also underscore the inadequacy of the 

traditional approach to prominence detection of heuristically 

tagging speech prominence into discrete levels (categories). 

Instead, we propose to keep the prominence score continuous, 

evaluate it by correlation with POS, and leave it for further 

processing by other applications such as natural language 

understanding. Furthermore, in contrast to most previous studies, 

we evaluate prominence scoring on spontaneous speech data 

(switchboard corpus). Our experimental results indicate that the 

proposed prominence score can robustly distinguish between 

content word and function word classes. 

1. INTRODUCTION 

Speech prominence detection is useful in many speech 

applications. In most natural language understanding (NLU) 

systems knowing only the speech-to-text transcription by itself 

are not sufficient. Prominence, which refers to a prosodic 

property, and not directly conveyed by transcription, is valuable 

in "understanding" the speech. For instance, previous work [20] 

has demonstrated its usefulness in clarifying the ambiguities in 

specific utterances. This is gaining increasing importance in 

recent years as more and more effort is directed toward 

spontaneous speech processing. The greater acoustic variability 

found in this realm makes acoustic modeling more challenging. 

Similarly, disfluency and the incomplete syntax prevalent in 

spontaneous speech degrade the traditional language modeling. 

Hence as a result, automatic recognition of spontaneous speech 

is considerably worse translating to serious problems for most of 

NLU algorithms. However, it is apparent that prosodic events 

carry rich and critical information in spontaneous speech 

communication. Hence, information about prominence, as well 

as other prosodic events, can play a more important role in 

processing and understanding spontaneous speech. For example, 

locating content words is an important goal in NLU and its 

accuracy has a crucial influence on the overall system 

performance. So, in addition to the semantic analysis of the text, 

measures of speech prominence could serve as a useful feature 

in this task of content word location.  

1.1. The notion of prominence  

The notion of the prominence seems not be well defined. Terken 

defines it as words or syllables that are perceived as standing out 

from their environment [5], or in other words, it refers to the 

perceptual salience of a language unit [3]. It also does not have 

clear boundary against sentence accent nor pitch accent [2]. We 

will soon see that many research challenges arise from the fuzzy 

nature of this definition. 

1.2. Prominence measure 

In order to enable an objective study on this problem, 

prominence has to be quantified. Various methods have been 

proposed each with its own advantages and disadvantages. 

Almost all researchers tend to take the approach of imposing 

discrete categorization on prominence measures. For instance, 

Portele and Heuft [7] define prominence on a scale from 0 to 30 

at the word level. But this measure is a challenging, if not 

impossible, task for the human transcribers that provide data for 

model training. On the other hand, a relatively easy task is just 

marking if a word is prominent or not [3] i.e., the prominence 

level of each word can be marked as either 0 or 1. It should be 

noted that in these, and most other previous studies, people have 

mostly used read speech as the data source. Even for those data, 

studies show that people only reach limited agreement (81% in 

[4], 87% in [8]) on word level prominence annotation.  

In this paper, we propose a new method for scoring prominence 

on a continuum that especially targets spontaneous speech.  It 

combines spectral and temporal features.  Further, correlation of 

this prominence score to  a linguistic measure (part of speech) is 

investigated rather than attempting classification into discrete  

prominence levels. Hence, the algorithm does not rely on 

manual transcription of prominence levels but does utilize 

speech-to-text information from ASR/transcriptions.   The rest of 

the paper is organized as follows: Sec 1.3 discusses the acoustic 

correlates of prominence; Sec 1.4 introduces part of speech as a 

prominence correlate. Sec 2 describes the algorithm to get the 

syllable nuclei, generate the prominence score and POS-based 

evaluation. Sec 3 discuss the experimental results. Further 

discussions and conclusions are provided in Sec 4.   

1.3. Acoustic correlates of prominence 

Numerous studies have been carried out on acoustic analysis of 

prominence in the recent several years and there is a rough 

agreement in the literature that syllable duration, pitch tilt, and 

intensity (or sub-band energy) have close correlation with 
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speech prominence. Nevertheless a number of key questions 

remain unanswered including: Are all these proposed features 

equally important and if not, what is their relative importance? 

Are there other possible features that better correlate with 

prominence? Finally, the difficulties in transcribing prominence 

easily and reliably make it difficult in directly applying well 

established supervised machine-learning methods. 

1.3.1. Syllable duration 

Syllable duration is a straightforward feature. Speakers tend to 

stretch the constituent syllable durations when they try to 

emphasize a specific word [13]. Recent research trends in 

locating syllable boundaries have moved from knowledge-based 

to statistics based approaches [9]. But neither of these methods 

seem to provide satisfactory performance on continuous read 

speech, let alone spontaneous speech.  Due to these difficulties 

in precisely locating syllable boundaries, we have instead opted 

for using speech rate information. Specifically, we adapt and 

modify the algorithm proposed for speech rate estimation in [17]. 

Details are provided in Section 2.  

1.3.2. Pitch feature 

Pitch patterns have been shown to have strong correlation with 

prominence. Again, several efforts have been made to 

quantitatively describe the complex pitch trajectory behavior. 

One trend is trying to enumerate all possible patterns by using a 

multi-level profile description [10]. A famous example of this is 

the TOBI system [11]. Yet this approach has its problem in its 

self-completeness (and as a result many prosodic systems are 

using a variant system modified from TOBI to meet specific 

needs [22]) and transcribing effectiveness. The other trend is to 

sacrifice or distort details of the pitch behavior and extract the 

very key features. A widely used approach is the 

Rise/Fall/Connection (RFC) model [12]. Nevertheless, almost all 

of these approaches treat pitch as a suprasegmental feature. 

What we do in this paper is to consider the pitch behavior in the 

syllable nuclei range. As the pitch range in this segmental range 

decreases considerably, we hypothesize that a simple modeling 

scheme would work in capturing the pitch behavior. Our 

experiment supports this argument. (See Sec 2.2 and Sec 3) 

1.3.3. Spectral intensity 

Spectral intensity also correlates with prominence [1]. Research 

shows that band energy in 500Hz – 2000Hz has maximum 

correlation with prominence [13]. Note that this also 

approximately coincides with the sonorant band (300-2300 Hz) 

in Strom’s study [14]. Interestingly, the other 2 bands ([0-300] 

Hz, [2300-6000Hz), related to the nasal and fricative bands, 

have been shown to have not much acoustic correlation with 

prominence. In this paper, we focus on the sonorant band but 

apply with both a temporal and spectral correlation method.  

1.3.4. Fusion methodology 

In this paper, we utilize the aforementioned features, but both 

the feature processing and the fusion approach are different from 

other previously published work. The motivation of this 

algorithm comes from two sources: Empirical; Learning from 

development test.  

1.4. Part of speech measure & performance evaluation  

For evaluation, people have used different quantization 

(categorization) methods to transcribe prominence (Section 1.3). 

The inherent uncertainty in any manual classification algorithm 

leads to the danger to lose and distort the original information. 

This point is underscored within the fuzzy logical community 

[15]. Yet in order to evaluate, we need a measure of prominence 

within a common, consistent reference. In this paper, we propose 

to use POS measure to provide the reference framework. 

POS has been long and very well studied within the NLU 

community. It might be viewed as a shallow parsing of language. 

Even though it is far from enough to convey the meaning of the 

language, it carries adequate information to convey speech 

prominence. For instance, people tend to be prominent on 

content words compared to functional words. Even though there 

may be exceptions to this rule, those cases are deemed to be 

statistical insignificant 

Another advantage for using POS measure is that automatic POS 

tagging has very good performance. Baseline unigram systems 

have the accuracy of about 90%. In Brill’s tagger, that uses 

simple contextual knowledge, the performance has reached 

97.2% [16]. However, we should note that the tagging 

performance using automatically transcribed spontaneous speech 

may be somewhat lower but still adequate for our purposes. We 

use Brill’s tagger in this work.  

2. ALGORITHM DESCRIPTION 

Based on the aforementioned discussion and ideas, this section 

tries to systematically describe the proposed algorithm in 3 parts. 

Part1 describes the approach for obtaining the spectral-temporal 

correlation envelope and the syllable nuclei. Part2 describes the 

fusion algorithm for the prominence score. Part3 describes how 

we evaluate the results.  

2.1. Syllable nuclei location 

Figure 1 is the illustration of the key component of this 

algorithm. The algorithm extracts the syllable nuclei from the 

correlation envelope of the speech signal. We extend the idea of 

sub-band correlation [17] and combine it with temporal 

correlation for getting the correlation envelope. In [17], a point-

wise correlation between pairs of compressed sub-band energy is 

computed to get the envelopes. Further peak counting is 

performed to get the underlying syllable numbers. In our 

approach, the following modifications are made:  

1. As described in Section 1.3.3, the sonorant band is the most 

informative in the context of prominence detection. So instead of 

performing full band analysis we only concentrate on the 

sonorant band. 

2. We make finer, and more, band divisions. They are 

Butterworth band-pass filters centered at 360 | 480 | 600 | 720 | 

840 | 1000 | 1150 | 1300 | 1450 | 1600 | 1800 | 2000 | 2200 [20]. 

The purpose is to track formant movement by selecting high 

energy subbands to do correlation (refer [6] for details). 

3. Instead of doing a point-wise correlation, we do a selected 

sub-band correlation. Using experimental results from a 

development test set, we choose the 3 bands that have most 

energy and correlate them. This is consistent with the formant 

properties of vowel sound.

4. In order to make syllable nucleus more apparent and make the 

final envelope smooth, not only is correlation performed 
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spectrally, but also temporally. Here again, as a result of 

experiments on the development test, a temporal 70ms window 

(7 frames) was chosen for correlation (further details are in [6]).

5. To counter spurious peaks in the correlation envelope due to 

fricatives and other non-speech noise, pitch verification is 

introduced to the algorithm. Peaks corresponding to unvoiced 

portions are rejected. (refer to figure 1(b))

6. Even with all the aforementioned processing steps, there may 

be still some noise in the correlation envelope that makes simple 

peak counting not a robust measure of syllable count. To counter 

this issue, further smoothing techniques are applied to the 

envelopes. One is by applying a Gaussian smoothing window, 

and the other is by setting a minimum threshold on peak heights. 

Again, these parameters are learnt using a development test.

After these refinements to the algorithm, we get a final 

correlation envelope of the speech signal. In addition to peak 

counting, we also keep the information of the bottoms (local 

minimum of the correlation envelope). Each bottom-peak-

bottom could represent a syllable nucleus. And the bottom-

bottom distance provides an estimate of the syllable duration.  

Fig1. Illustration of algorithm described in Section 2.1 

a) speech waveform. b) pitch. c) correlation envelope 

d) maximum(peaks)  e) minimum(bottoms) 

2.2. Prominence score computation 

Now with the correlation envelope, bottom-peak information 

and pitch information, we generate the prominence related 

features and finally compute the prominence score. As 

mentioned in Sec 1.2, we assume quantization of prominence 

levels. For each syllable nuclei (bottom-peak-bottom):  

1. The duration score is retrieved by computing the bottom-

bottom distance and normalizing it by the maximum duration. 

Since we apply the pitch verification and minimum thresholding 

for peaks, there exist, albeit infrequently, cases that have no 

measurable peak between neighboring bottoms. So the distance 

we consider here is the neighboring bottoms that have a peak in 

between. (refer to figure 1(d) and 1(e)) 

2. The spectrum score is represented by the peak value 

normalized by the maximum peak. The peak comes from the 

selected sub-band correlation and the temporal correlation (see 

Sec 2.1). This is our choice for spectrum intensity representation. 

We do not consider the integration of the envelope [1], since the 

duration factor will be recomputed. 

3. By median filtering and jump removal of pitch curve, we use 

median pitch inside a syllable nucleus to score the pitch feature. 

Of course, normalization by maximum pitch is applied. 

We choose an unsupervised approach. The final score is the 

mean of these 3 scores. (refer Sec 4 for further discussions.)  

2.3. POS evaluation 

Now we need to map the syllable score to the word, then to the 

POS. The word transcriptions can come from an ASR decoder or 

the manual transcription from the data provider (see Sec 3). 

1. We use Brill’s tagger in this task. The word transcription is 

passed to the tagger and the POS taggings are recorded.  

2. Tag the word boundary timing information (from the data 

transcription, see Sec. 3) on the correlation envelope.  

3. Distribute the syllable nuclei to its belonging word according 

to the timing information in step 2.  

4. Such a word might have multiple syllables. Based on 

observations by other researchers, and our own, we can note that 

speakers tend to express the prominence of a word in the 

stressed syllable. So we keep the syllable with the highest 

prominence score to represent the word’s prominence and 

discard all other syllables.  

5. From step 1, each word has its POS tagging. Now we treat the 

word score in step 4 as its POS score. Then record this POS 

score in the POS hash tables. For example, "book" has a score 

0.6, "table" has a score 0.7, these two word contribute the 

"NOUN" in the POS hash table with two items of 0.6 and 0.7. 

6. Now we can get the final POS score by averaging all the items 

in each POS category. Then, we can compare the POS scores of 

functional words and content words. The difference will indicate 

the performance of the prominence detection algorithm. 

3. DATA AND RESULT 

The data used are from 5757 utterances found in the 

Switchboard corpus, comprising approximately four hours of 

data. These utterances were phonetically hand transcribed by 

linguists in the Switchboard Transcription Project at ICSI [18]. 

In order to make the algorithm general, we compute the syllable 

nuclei by our own method. However, for these experiments we 

used the word level transcriptions made available as input to the 

POS tagger. (See Sec 2.3) 

The following components are computed by the speech filing 

system: sub-band energy computation, pitch estimation, median 

filtering and jump removing [19]. 

We randomly selected 315 spurts as a development set. 

Temporal correlation window length, sub-band number, 

Gaussian smoothing window, minimum thresholding are tuned 

with respect to the differences between the measured syllable 

number and transcribed syllable number. With all these 

processing, the final correlation envelope is retrieved. 

Then, prominence score computation and POS evaluation were 

implemented as described in Sec 2.2 and Sec 2.3.  

Figure 2 shows a plot of prominence scores for different POS 

categories. The left 4 represent functional word category and the 

right 4, content word category. Ideally, we desire a statistically 

significant difference between these 2 classes. ANOVA analysis 

I - 379

➡ ➡



performed on these 2 classes indicates that was indeed the case. 

We get a p value < 0.0001. 

Fig2 Result POS-based prominence scores: CC:conjunction, DT: 

determiner, TO: "to", PRP:preposition, NN(single noun), 

NNS(plural noun), VBN:verb(past), VBG:verb(gerund). 

4. CONCLUSIONS AND DISCUSSION 

It is apparent from the results (Fig.2) that content words have 

higher prominence scores than functional words (by about 20% 

in the maximum scale of 1). There is a "step" between the 2 

classes. These results were computed from 5757 spontaneous 

speech utterances, and attest to statistical generalizability of the 

observation. In this sense, we can note that the proposed 

prominence score conveys useful information in processing 

spontaneous speech.  

In Section 2.2, we obtained the prominence score as a mean of 

three different measures. In general, this may not be optimal. 

Optimal score combination through (supervised) machine 

learning may provide a more principled approach. There is of 

course a trade-off between supervised and unsupervised methods. 

Supervised approach for learning needs more data transcription 

and reference prominence score (through some discretization) 

that may be unreliable. Further more, the learning algorithm 

(e.g., CART, ANN and SVM) is far from mature to optimally 

"understand" the feature patterns. That is one reason why the 

unsupervised approach is favored in this work since it is fast and 

straightforward.  

The other possible advantage of this evaluation is the data 

selectivity.  We mentioned that manually transcribed 

prominence has limited word level agreement [4][8]. Our 

approach does not require direct prominence transcription but 

attempts to infer its utility indirectly from linguistic information 

such as content word detection.   

There are other applications beyond that illustrated. For instance, 

the prominence score could also work as a confidence score for 

automatic speech recognition. Such scores can be used in 

conjunction with language models to appropriately weight 

lexical items e.g., function versus content words since they tend 

to have different discrimination behavior (function words are 

more error prone at decoding).  Similarly prominence scores can 

be used in automatic NLU to improve its performance. An 

example application is what we are doing in MRE project [21]. 

Details of such applications will be described in future work. 
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