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ABSTRACT

A novel hands free speech recognition method using a mi-
crophone array is proposed and is applied to the multi-talk
recognition in the blind condition, no prior information about
the sound sources and the characteristics of room acoustics.
The proposed system is constructed by the cascade of the
sound localization system, MUSIC, and the sound segrega-
tion system, SMDP (Segregation using Multiple Directivity
Patterns) proposed in our previous paper. SMDP is charac-
terized by using redundant directivity patterns. Usually, it
is difficult for this sort of cascade system to achieve high
performance because the sound localization stage cannot
be perfect and errors occurred in this first stage cause seri-
ous damages to the segregation stage. Particularly missing
the sound source is critical. By arranging the virtual sound
sources, we treat the excess sound sources. In the proposed
method, contrarily, the errors in the localization stage hardly
cause the problems as long as they are insertion. SMDP
uses redundant directivity patterns from the first, so it tol-
erates the insertion errors. The proposed method achieved
70% word accuracy in the double-talk recognition experi-
ment of 20 K vocabulary, which is 18 point better compared
to the ICA-based blind source separation with the source-
number-given condition.

1. INTRODUCTION

Multi-talk recognition is indispensable to realize various ap-
plications of hands free speech recognition, for example,
group conversation systems such as humanoid robot, dic-
tation systems of meeting, interfaces of car-navigation sys-
tems. Microphone array, which makes active use of spa-
tial information between microphones and sound sources,
is very effective to realize these applications[1][2]. We have
proposed the novel speech segregation method, called SMDP,
based on multiple directivity patterns using a microphone
array not only single directivity[3]. High performance source
segregation is realized to be robust against the error factor
caused by the back-ground noise and the reverberation and

so on. Proposed system showed superiority to the conven-
tional array techniques. However the source positions were
completely given in the previous experiment.

In this paper, double-talk recognition is realized in the
blind condition, where there is no priori information about
the sound sources and the characteristics of room acous-
tics. SMDP is carried out based on the estimated source
positions given by MUSIC[4]. Usually segregation perfor-
mance is influenced by precision of source localization. The
source spectra are estimated as the solutions of redundant
simultaneous equations in proposed system, therefore in-
sertion of sound sources hardly causes the deterioration of
segregation performance. However the missing of sound
sources is critical to the segregation performance. The vir-
tual sound sources are arranged at the positions where the
sound sources are likely to exist. These positions are de-
cided by analyzing the frequency of estimated positions dur-
ing the utterance. Multiple directivity patterns are designed
from both of virtual and estimated source positions. In this
way, disturbance spectrum is estimated to be robust against
uncertainty of source localization and is removed by spec-
tral subtraction. Enhancement of target speech is realized.

In the following section, the algorithm of proposed hands
free speech recognition method is described in detail. In
section 3, conditions and results of continuous speech recog-
nition are described. We give the conclusions in section 4.

2. PROPOSED METHOD

2.1. Formulation of the sound field

Figure.1 shows the diagram of proposed method. We as-
sume the environment where D sound sources exist and the
sound field is observed by M microphones. We define the
input vector x (k, t) as STFT of the input signal into a mi-
crophone array. Using the location vector, x(k, t) is written
as follows.

x (k, t) = A (k)s (k, t) + n (k, t)
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Fig. 1. Diagram of proposed method.

where,

A (k) = [a1 (k) , · · · , aD (k)]

s (k, t) = [s1 (k, t) , · · · , sD (k, t)]T

n (k, t) = [n1 (k, t) , · · · , nM (k, t)]T

ad(k) denotes the location vector from d-th source to the
microphones. The DFT coefficients of measured impulse
responses are usually used as ad(k). The location vectors
are calculated using characteristics of delay between micro-
phones and the source positions to be robust against envi-
ronmental changes. sd(k, t) denotes the spectrum of d-th
source. nm(k, t) denotes the spectrum of the back-ground
noise and the reverberation at microphone m. [·]T denotes
the transposition. k and t denote the discrete frequency and
frame index respectively. From this, to simplify the expres-
sion, we omit the symbol k and t.

2.2. Sound source localization

MUSIC is applied to sound source localization. The spatial
correlation matrix R = E

[
x · xH

]
is decomposed into the

signal subspace and the noise subspace. MUSIC spectrum
is calculated in each frequency band using the eigenvalue
decomposition, R = EΛE−1.

Pmusic (r, θ) =
aH (r, θ) a (r, θ)

aH (r, θ)ENEH
Na (r, θ)

EN = [eL+1, eL+2, · · · , eM ]

[·]H denotes the complex conjugate transposition. EN is
the eigenvectors corresponding to the noise subspace, the

smallest M − L eigenvalues. The number of sound sources
must be known in advance to apply MUSIC. The number of
sound sources is estimated by AIC in each frequency band
and in each analysis block.

The source positions pi (i = 1, 2, . . . , K) are estimated
by peak picking of MUSIC spectrum in two-dimensional
space.

2.3. Sound source segregation

2.3.1. Estimation of source spectrum

Redundant simultaneous equations between amplitudes of
source spectra and multiple directivity patterns are set up.
Source spectra are estimated as the least squares solutions
of these equations. To make the problem simple, let us as-
sume two sound sources exist in the sound field. When a
directivity pattern f 1 is given to the input vector x , average
power spectrum of the output y1 is written as follows[3].

〈|y1|2〉 = |F11|2 〈|s1|2〉 + |F12|2 〈|s2|2〉 + ε1

Fij represents the dot product between f i and aj . εi rep-
resents the error factor caused by the back-ground noise
and the reverberation and the error of the location vector it-
self. 〈·〉 denotes the frame-averaging. Equation is only one,
nevertheless unknown variables are 〈|s1|2〉, 〈|s2|2〉. Source
spectra cannot be estimated.

Applying P directivity patterns fi (i = 1, . . . , P ), the re-
dundant simultaneous equations are obtained.

Y = F · s̄ + ε

where,

Y = [ 〈|y1|2〉, 〈|y2|2〉, · · · , 〈|yP |2〉 ]T

s̄ = [ 〈|s1|2〉, 〈|s2|2〉, . . . , 〈|sD|2〉 ]T

ε = [ ε1, ε2, . . . , εP ]T

F =

⎛
⎜⎝

|F11|2 |F12|2 · · · |F1D|2
...

...
. . .

...
|FP1|2 |FP2|2 · · · |FPD|2

⎞
⎟⎠

Y denotes the average power spectra of the output signals
given by P directivity patterns. s̄ denotes the average source
power spectra. ε denotes the error factors. F denotes the
amplitudes of directivity patterns. As a matter of fact, each
equation contains the error factor. The average source power
spectra are estimated by minimizing the squared error εT ε.

min
s

εT ε ⇒ ∇sε
T ε = 0

s̄ = (F T F )−1F T Y
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2.3.2. Speech enhancement

The disturbance spectrum is removed from short-time spec-
trum by spectral subtraction. Let us assume that s1 is tar-
get source and y1 represents the short-time spectrum that
the target source is emphasized or the signal that the dis-
turbance sources are suppressed. The short-time spectrum
of target source |ŝ1|2 is obtained using the estimated distur-
bance spectrum 〈|s2|2〉.

|ŝ1|2 =

⎧⎨
⎩

|y1|2 − α · 〈|s2|2〉,
if |y1|2 − α · 〈|s2|2〉 > β

β, otherwise

α is an amplitude of the subtraction process. β is flooring
coefficient.

2.4. Integration

Multiple directivity patterns are designed using source lo-
calization results. However source localization cannot be
perfect. Insertion and missing of source sources sometimes
occurred. Proposed method is robust against the insertion
because source spectra are estimated as the least squares so-
lutions of redundant simultaneous equations from the first.
Missing of sound sources is quite critical to segregation per-
formance because the number of directivity patterns is lim-
ited. Therefore disturbance estimation is unreliable. The
virtual sound sources are arranged at the positions where
the sound sources are likely to exist. The virtual source
positions are decided by analyzing the frequency of esti-
mated positions during the utterance. Multiple directivity
patterns are designed using both of the virtual and estimated
source positions. This concept sometimes produces the ex-
cess sound sources over the actual number. However, inser-
tion of sound sources hardly cause the deterioration of seg-
regation performance as has been mentioned. The reliable
disturbance spectrum is estimated and removed by spectral
subtraction. In proposed system, the errors of localization
stage are tolerated in segregation stage.

3. EXPERIMENT

3.1. Experimental Setup

We recorded the speech data to enable continuous speech
recognition. Sampling and quantization is 32 kHz and 16
bits respectively. The microphone array consists of eight
omnidirectional microphones. Array form is linear and con-
sistent spacing of 3cm. Figure. 2 shows the recording con-
dition. The reverberation time (RT) is 120ms and 200ms.
The loudspeaker arranged in front of the microphone array
is the target source. Another loudspeaker is the disturbance
source and is moved to vary experimental conditions. Eval-
uation data is totally recorded in four different conditions.

4 m
2 m

2 m
d
θ

5.5 m

Target

Disturbance

°== 6030100 ,,cmd θ

Fig. 2. Recording condition.

As for the target utterances, we select 100 sentences spo-
ken by 23 male speakers from ASJ-JNAS continuous speech
corpus. As for the disturbance utterances, we select speech
data spoken by other male speakers from ASJ-JNAS. Each
utterance is adjusted to almost the same length and the same
energy. The SNR is almost 0 dB.

3.2. Speech Processing

3.2.1. Sound source localization

The spatial correlation matrix is calculated every 96ms. Frame
length is 32ms and frame shift is 32ms. The period in which
the input energy is small is eliminated from calculation of
spatial correlation matrix. MUSIC spectrum calculated in
each frequency band is added in frequency domain.

Pmusic (r, θ) =
k2∑

k=k1

Pmusic (k, r, θ)

[k1, k2] = [2000, 4000]Hz. The location vectors are calcu-
lated at intervals of 5 degree in the range of -90 to 90 de-
gree and at intervals of 10 cm in the range of 50 to 150 cm
to the microphone array front. Totally the location vectors
are calculated at 407 points. Source positions can be esti-
mated with very detailed resolution because we don’t use
measured impulse responses.

3.2.2. Sound source segregation

In the case that source localization result is within ±10 de-
gree in front of microphone array, segregation of target source
is carried out. The directivity patterns used in this experi-
ment are the DS filter, which emphasizes each sound source,
and the DCMP filter, which suppresses each sound source.
The number of directivity patterns is twice that of estimated
sound sources. Analysis condition is as follows. Frame
length is 32ms, frame shift is 8ms and window function is
Hamming.

I - 375

➡ ➡



3.2.3. Speech Recognition

The parameters of the acoustic features are as follows. Acous-
tic features are 12-dimentional MFCC and ∆MFCC and
∆power. Pre-emphasis is done by 1 − 0.97z−1. Frame
length is 25ms and frame shift is 10ms. Window function is
Hamming. The acoustic models are trained with 20 K sen-
tences spoken by about 100 male speakers from ASJ-JNAS
corpus. The training data is recorded with close-talk mi-
crophone. The language models are the trigram language
models using lexicon of 20 K vocabulary size. In this ex-
periment, the speech data is sampled at 32kHz. On the other
hand, the acoustic models are trained with the speech data
sampled at 16kHz. Segregated speech is converted to 16kHz
sampling rate and converted to acoustic features.

3.3. Evaluation

We apply the proposed method to double-talk recognition in
the blind condition. Effectiveness of the proposed method
is evaluated in two points.

1. Comparison of the condition that the number of sources
is unknown ( Blind ) and the number of sources is
known ( Semi-Blind ) and the sound source positions
are completely known ( Completely Known ).

2. Comparison with the BSS method based on ICA.

In experiment 2, JADE[5] algorithm in frequency domain is
adopted as the BSS method. In this method, source separa-
tion is carried out in the semi-blind condition. On the other
hand, proposed method is carried out in the blind condition.

3.4. Results

Figure.3 shows the result of experiment 1. Word accuracy
in the blind condition is the almost same in the semi-blind
condition. From this result, source segregation is carried out
to be robust against the uncertainty of source localization.
We can confirm that it is very effective to arrange the vir-
tual sound sources at the positions where the sound source
are likely to exist but are not estimated practically. Pro-
posed method achieved about 90 % performance compared
with the condition that the source positions are completely
known. In our preliminary experiment, the result of source
localization had the error of about 10 degree in direction.
Proposed method showed the robustness against the source
localization error. The errors of localization stage are toler-
ated in segregation stage. Result of the comparison with the
BSS method is shown in fig.4. Performance of BSS deteri-
orated under the long reverberation environment compared
with proposed method. The longer the reverberation time
is, the more error factors increase. Proposed method is ro-
bust against the error factors and has superiority to the BSS
method.
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Fig. 3. Evaluation of proposed method. (Each thick bar rep-
resents the average performance. Line on the bar represents
the maximum and minimum performance.)
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Fig. 4. Comparison of proposed method and BSS method.

4. CONCLUSION

We proposed hands free speech recognition method, which
is constructed by the cascade of MUSIC and SMDP. Robust
source segregation against the errors in localization stage is
realized.Proposed method achieved 70 % word accuracy in
double-talk recognition of 20 K vocabulary in the blind con-
dition. From the comparison of the ICA-based BSS method,
the great advantage of proposed method was shown, partic-
ularly in long reverberation environment.
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