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ABSTRACT

This paper describes an adaptive training technique for hidden
semi-Markov model (HSMM). The adaptive training scheme con-
ducts normalization of speaker differences and acoustic variabil-
ity in both output and state duration distributions of a canonical
model by using HSMM-based MLLR adaptation. We incorpo-
rate the adaptive training into our HSMM-based speech synthesis
system with MLLR adaptation and compare synthesized speech
using the adaptive training with that using standard speaker inde-
pendent training. From the results of subjective tests, we show that
the adaptive training outperforms speaker independent training and
also show that the speech synthesis system generates speech with
better naturalness and intelligibility than the original HSMM-based
speech synthesis system.

1. INTRODUCTION

Recently maximum likelihood linear regression (MLLR) adap-
tation [1] has been used widely as an effective speaker adapta-
tion technique that tunes speaker independent models to a new
speaker by using a small amount of new speaker’s speech data.
Furthermore adaptive training schemes [2–5] have become the
focus of attention as powerful training techniques reducing influ-
ence of speaker differences and acoustic variability of a canonical
model, i.e., an initial seed model of the adaptation.

In an HMM-based speech synthesis system proposed in [6],
we showed that the MLLR adaptation can approximate voice char-
acteristics of synthetic speech to those of a target speaker by using
a small amount of adaptation data uttered by the target speaker. We
also showed that speaker adaptive training (SAT) technique [2]
can significantly improve the quality of the canonical model1 and
the quality of the synthetic speech after the adaptation. In [6], the
adaptive training was conducted for normalizing only state output
probability distributions which represent spectrum and F0 param-
eters of speech data. However, phone/segmental duration param-
eters of speech data also have the significant differences among
the training speakers and it would occur that the state duration dis-
tributions of the canonical model have relatively large dependence
on speakers and/or gender included in the training speech database.
To obtain higher performance in the speaker adaptation to a wide
variety of target speakers, the state duration distributions as well
as the output distributions of the canonical model should not have
any dependence on speaker and/or gender.

In this paper, we propose an adaptive training technique for
normalizing simultaneously spectrum, F0, and duration parame-
ters in a framework of hidden semi-Markov model (HSMM) [7–9].
The HSMM is a kind of HMM with explicit state duration proba-
bility distributions instead of self-transition probabilities, and the

1In [6], we referred to the canonical model as the average voice model.

HSMM-based adaptive training conducts normalization of speaker
differences and acoustic variability in both output and state dura-
tion distributions of the canonical model by using HSMM-based
MLLR adaptation technique [10]. We incorporate the adaptive
training into our HSMM-based speech synthesis system [11] with
the MLLR adaptation and show its effectiveness from results of
subjective evaluation tests.

2. SPEAKER INDEPENDENT TRAINING OF HIDDEN
SEMI-MARKOV MODEL

Before deriving HSMM-based adaptive training, we briefly re-
view speaker independent training of hidden semi-Markov model
[7–9]. An N -state HSMM λ is specified by initial state probability
{πi}N

i=1, state transition probability {aij}N
i,j=1,i�=j , state output

probability distribution {bi(·)}N
i=1, and state duration probability

distribution {pi(·)}N
i=1. In this study we assume that the i-th state

output and duration distributions are Gaussian distributions char-
acterized by mean vector µi and diagonal covariance matrix Σi,
and mean mi and variance σ2

i , respectively,

bi(o) = N (o; µi,Σi) (1)

pi(d) = N (d; mi, σ
2
i ). (2)

The observation probability of training data O = {o1, · · · , oT }
of length T given the model λ can be written as

P (O|λ) =

N∑
i=1

t∑
d=1

γd
t (i) ∀ t ∈ [1, T ] (3)

where γd
t (i) is a probability generating serial observation sequence

ot−d+1, · · · , ot at i-th state defined by

γd
t (i) =

N∑
j=1
j �=i

αt−d(j)ajipi(d)

t∏
s=t−d+1

bi(os)βt(i). (4)

In this equation, αt(i) and βt(i) are forward and backward proba-
bilities defined by

αt(i) =

t∑
d=1

N∑
j=1
j �=i

αt−d(j)ajipi(d)

t∏
s=t−d+1

bi(os) (5)

βt(i) =

T−t∑
d=1

N∑
j=1
j �=i

aijpj(d)

t+d∏
s=t+1

bj(os)βt+d(j) (6)

where aji is the transition probability from state j to i, α0(i) = πi,
and βT (i) = 1. In the following, for simplification, we assume
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that HSMM is a simple left-to-right model without skip paths. As
a result, the parameter set of HSMM λ can be simplified as λ =
(µ,Σ, m, σ2).

The conventional speaker independent training based on max-
imum likelihood (ML) criterion can be formulated as follows:

λSI = argmax
λ

P (O|λ). (7)

The re-estimation formulas based on Baum-Welch algorithm of the
parameter set λ are given by

µi =

T,t∑
t,d

γd
t (i)

t∑
s=t−d+1

os

T,t∑
t,d

γd
t (i) d

(8)

Σi =

T,t∑
t,d

γd
t (i)

t∑
s=t−d+1

(os−µi)(os−µi)
�

T,t∑
t,d

γd
t (i) d

(9)

mi =

T,t∑
t,d

γd
t (i) · d

T,t∑
t,d

γd
t (i)

(10)

σ2
i =

T,t∑
t,d

γd
t (i) · (d − mi)

2

T,t∑
t,d

γd
t (i)

. (11)

3. SPEAKER ADAPTIVE TRAINING FOR HIDDEN
SEMI-MARKOV MODEL

Next we derive an HSMM-based speaker adaptive training (SAT)
algorithm. The basic idea of SAT algorithm is to use MLLR trans-
formations for representing the acoustic differences among the train-
ing speakers and to train a canonical model by using the set of the
MLLR transformations. The HSMM-based SAT algorithm makes
use of HSMM-based MLLR algorithm [10] in which mean vectors
of state output and duration distributions for speaker f are obtained
by linearly transforming mean vector of state output and duration
distributions of the canonical model,

bi(o
(f)) = N (o; W (f)ξi,Σi)

= N (o; ζ(f)µi + ε(f),Σi)
(12)

pi(d) = N (d; X(f)φi, σ
2
i )

= N (d; χ(f)mi + ν(f), σ2
i )

(13)

where W (f) =
[
ζ(f), ε(f)

]
and X(f) =

[
χ(f), ν(f)

]
are n ×

(n + 1) and 1 × 2 transformation matrices of speaker f for state
output and duration distributions, respectively, ζ(f) and ε(f) are
n × n matrix and n-dimensional vector, respectively, and ξi =
[µ�

i , 1]� and φi = [mi, 1]� are (n + 1)-dimensional and 2-
dimensional vectors. Let F be the total number of the training

speakers, O = {O(1), · · · , O(F )} be all training data, and O(f)

= {o1f , · · · , oTf } be the training data of length Tf for speaker f .
Speaker adaptive training based on ML criterion can be formulated
as follows2:

(λSAT , ΛSAT ) = argmax
λ,Λ

P (O|λ, Λ)

= argmax
λ,Λ

F∏
f=1

P (O(f)|λ, Λ(f))
(14)

where Λ = (Λ(1), · · · , Λ(F )) and Λ(f) = (W (f), X(f)). In
other words, in the SAT paradigm, the optimum parameter set of
λ and the transformation matrices Λ are estimated jointly so as to
maximize the likelihood (14). The re-estimation formulas based
on Baum-Welch algorithm of the parameter set λ are given by

µi =

⎡
⎣

F,Tf ,t∑
f,t,d

γd
t (i) d ζ

(f)�
Σ−1

i ζ
(f)

⎤
⎦
−1

·
⎡
⎣

F,Tf ,t∑
f,t,d

γd
t (i) ζ

(f)�
Σ−1

i

t∑
s=t−d+1

(osf − ε(f))

⎤
⎦ (15)

Σi =

F,Tf ,t∑
f,t,d

γd
t (i)

t∑
s=t−d+1

(osf−µ
(f)
i )(osf−µ

(f)
i )�

F,Tf ,t∑
f,t,d

γd
t (i) d

(16)

mi =

F,Tf ,t∑
f,t,d

γd
t (i) χ(f)(d − ν(f))

F,Tf ,t∑
f,t,d

γd
t (i) χ(f)2

(17)

σ2
i =

F,Tf ,t∑
f,t,d

γd
t (i) (d − m

(f)
i )2

F,Tf ,t∑
f,t,d

γd
t (i)

, (18)

where

µ
(f)
i = ζ

(f)
µi + ε(f) (19)

m
(f)
i = χ(f)mi + ν(f). (20)

The re-estimation formulas based on Baum-Welch algorithm of the
transformation matrices Λ(f) are given by

w(f)� = Gl
−1y�

l (21)

X
(f)

=

⎛
⎝

Tf ,R,t∑
t,r,d

γd
t (r)d

σ2
r

φ�
r

⎞
⎠

⎛
⎝

Tf ,R,t∑
t,r,d

γd
t (r)

σ2
r

φrφ
�
r

⎞
⎠

−1

(22)

where (n + 1) × (n + 1) matrix Gl is given by

Gl =

Tf ,R,t∑
t,r,d

γd
t (r) d

1

Σr(l)
ξrξ

�
r , (23)

2It is straightforward to estimate multiple transformation matrices for
each speaker using tree structures. However, for notational simplicity, we
denote the transformation for each speaker as a single transform.
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w(f) and yl are the l-th row vectors of W (f) and n × (n + 1)
matrix Y written as

Y =

Tf ,R,t∑
t,r,d

γd
t (r) Σ−1

r

t∑
s=t−d+1

os ξ�
r , (24)

respectively, Σr(l) is the l-th diagonal element of Σr , and R is the
number of distributions sharing the same transformation matrix.

4. HSMM-BASED SPEECH SYNTHESIS WITH MLLR
SPEAKER ADAPTATION

In this study, we use an HSMM-based speech synthesis system
with the MLLR adaptation framework. The basic structure is sim-
ilar to the HMM-based speech synthesis system of [6].

In the training stage, context dependent phoneme HSMMs are
trained using multi-speaker speech database. Spectrum, F0, and
duration are modeled by multi-stream HSMMs in which output
distributions for spectral and F0 parts are modeled using contin-
uous probability distribution and multi-space probability distribu-
tion [12], respectively. To model variations of spectrum, F0, and
duration, we take several phonetic and linguistic contextual fac-
tors such as phoneme identity factors, stress related factors, and
locational factors into account. Then, shared decision tree based
clustering technique [6] is separately applied to the spectral, F0,
and duration parts of the context dependent phoneme HSMMs.
Moreover, we apply re-estimation process using the SAT algorithm
described in Sect. 3 to the clustered and tied context dependent
HSMMs. The resultant context dependent HSMMs are used as the
canonical model of the adaptation.

In the adaptation stage, the canonical model is adapted to a
target speaker using a small amount of speech data uttered by the
target speaker. We use the HSMM-based MLLR algorithm [10] to
adapt spectrum, F0, and state duration at the same time.

In the synthesis stage, texts are transformed into a context de-
pendent label sequence. In accordance with the label sequence, a
sentence HSMM is constructed by concatenating context depen-
dent HSMMs. From the sentence HSMM, spectral and F0 param-
eter sequences are obtained based on ML criterion. Finally, by
using MLSA filter, speech is synthesized from the generated mel-
cepstral and F0 parameter sequences.

5. EXPERIMENTS

5.1. Experimental Conditions

We used a set of phonetically balanced sentences of ATR Japanese
speech database (Set B) for training data of HSMMs. We used
42 phonemes including silence and pause. Speech signals were
sampled at a rate of 16kHz and windowed by a 25ms Blackman
window with a 5ms shift. The feature vectors consisted of 25 mel-
cepstral coefficients including the zeroth coefficient, logarithm of
fundamental frequency, and their delta and delta-delta coefficients.

We used 5-state left-to-right HSMMs. The canonical model
was trained using 1500 sentences, 300 sentences for each of five
male speakers. We set a male speaker “mht” as the target speaker,
and adapted the canonical model to the target speaker using 50 sen-
tences which were included in the training sentences. In the SAT
and MLLR algorithm, multiple transformation matrices were es-
timated for each speaker using shared-decision-trees constructed
in the training stage. For comparison, we also trained a speaker
independent HSMMs using the conventional speaker independent
training (SIT) described in Sect. 2 and the standard decision tree
based clustering [13]. The number of iterations for both SAT and

Table 1. The number of distributions after clustering.
SIT SAT SD

Spec. 3323 3227 934
F0 4557 3926 1549

Dur. 1253 1318 199

SIT methods is set to 3. Furthermore, we also trained speaker de-
pendent HSMMs using 450 sentences for the target speaker. It
is noted that we ignore the duration probability pi(d) for d > D,
whereD is a prescribed maximum duration value, to keep the com-
putational costs in a reasonable range for all training and adapta-
tion paradigms. In this study, we set D to 100 frames.

Table 1 shows the number of distributions included in the mod-
els after clustering. The entries for “SIT,”“SAT,” and “SD” corre-
spond to the models obtained using the conventional SIT method,
the proposed SAT method, and the speaker dependent modeling,
respectively. In addition, “Spec.,”“F0,” and “Dur.” represent the
spectrum, F0, and state duration, respectively. We adjusted the
number of distributions of the SAT model to a comparable size
with that of SIT model.

5.2. Comparison of Speaker Adaptive Training and Speaker
Independent Training

We first compared the naturalness and intelligibility of the synthe-
sized speech generated from the models using SAT or SIT method
by a paired comparison test. Subjects were seven persons, and
presented a pair of synthesized speech samples generated from
the models using SAT and SIT methods in random order and then
asked which samples had better naturalness and intelligibility. For
each subject, 10 test sentences were chosen at random from 53 test
sentences which were contained in neither training nor adaptation
data sentence set.

Figure 1 shows the preference scores. In the figure, “SAT” rep-
resents the results for synthesized speech using the proposed SAT
method and “SIT” represents the results for synthesized speech
using the conventional SIT method. A confidence interval of 95
% is also shown in the figure. From the figure, we can see that
the proposed SAT method significantly outperforms the conven-
tional SIT method at the 95% confidence level. This is because the
HSMM-based SAT algorithm can reduce the influence of speaker
dependency during re-estimation process, and as a result, more
appropriate speaker adaptation of both the output and the state du-
ration distribution was conducted than the normal SIT algorithm
and inappropriate transformations were suppressed.

5.3. Comparison of MLLR Adaptation-based Speech Synthe-
sis and Speaker Dependent Speech Synthesis

We then compared the naturalness and intelligibility of the syn-
thesized speech generated from the model using SAT method and
the target speaker’s dependent model by a paired comparison test.
Subjects and other experimental conditions were the same as the
evaluation test described in Sect. 5.2.

Figure 2 shows the preference scores. In the figure, “SAT” rep-
resents the results for synthesized speech using the proposed SAT
method and “SD” represents the result for synthesized speech us-
ing the speaker dependent model of the target speaker. It can be
seen from the figure that the proposed SAT method significantly
outperforms the speaker dependent model of the target speaker at
the 95% confidence level. This means that the amount of the train-
ing data for the speaker dependent model is not sufficient in order
to generate synthetic speech with good naturalness and intelligibil-
ity, and the proposed technique would yield a rich canonical model
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0 20 40 60 80 100
Score[%]

40.7 59.3

SIT SAT

Fig. 1. Evaluation of the HSMM-based speaker adaptive training.

0 20 40 60 80 100
Score[%]

31.8 68.2

SD SAT

Fig. 2. Evaluation of the MLLR adaptation-based speech synthesis
approach.

having a lot of training data with various contextual factors and
improving the naturalness and intelligibility of synthesized speech
after the speaker adaptation crucially.

5.4. Evaluation on Voice Characteristics and Prosodic Fea-
tures of Synthesized Speech

We finally conducted a Comparison Category Rating (CCR) test
to evaluate voice characteristics and prosodic features of synthe-
sized speech from the model using SAT method and the target
speaker’s dependent model. Five persons listened to 8 sentences
of synthesized speech chosen randomly from 53 test sentences and
rated their voice characteristics and prosodic features comparing to
those of the reference speech. The reference speech was synthe-
sized by a mel-cepstral vocoder. The rating is a 5-point scale, that
is, 5 for very similar, 4 for similar, 3 for slightly similar, 2 for
dissimilar and 1 for very dissimilar. For comparison, we also eval-
uated average voice which is synthetic speech generated from the
canonical model.

Figure 3 shows the results of the CCR test. “SAT” represents
the results for synthesized speech using the proposed SAT method,
“SD” represents the result for the speaker dependent model of the
target speaker, and “AV” represents the result for the average voice.
This result confirms that synthesized speech using the proposed
technique has voice characteristics and prosodic features similar to
the synthesized speech using the speaker dependent model. How-
ever the result also shows the proposed SAT method does not out-
perform the speaker dependent model of the target speaker in voice
characteristics and needs further improvement. This is because all
of voice characteristics and prosodic features of the target speaker
is not included in a small amount of the adaptation data.

6. CONCLUSIONS

This paper has described an adaptive training technique for hid-
den semi-Markov model. The adaptive training conducts speaker
normalization of both output and state duration distributions of a
canonical model by using HSMM-based MLLR adaptation. From
the results of subjective tests, we have shown that the adaptive
training outperforms speaker independent training. Moreover, we
have shown that the speech synthesis system using MLLR adap-
tation generates synthetic speech with better naturalness and in-
telligibility than the conventional HSMM-based speech synthesis
system. Future work will focus on further evaluations of proposed
technique using different speakers and development of proposed
technique using other criterion such as MPE criterion [4].

AV

SAT

SD

1 2 3 4 5
Score

Fig. 3. Evaluation of speaker characteristics of synthesized speech.
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