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ABSTRACT

This paper presents an analysis of the applicability of Sparse
Kernel Principal Component Analysis (SKPCA) for feature ex-
traction in speech recognition, as well as, a proposed approach
to make the SKPCA technique realizable for a large amount of
training data, which is an usual context in speech recognition sys-
tems. Although the KPCA (Kernel Principal Component Anal-
ysis) has proved to be an efficient technique for being applied
to speech recognition, it has the disadvantage of requiring train-
ing data reduction, when its amount is excessively large. The
standard approach to perform this data reduction is to randomly
choose frames from the original data set, which does not necessar-
ily provide a good statistical representation of the original data set.
In order to solve this problem a likelihood related re-estimation
procedure was applied to the KPCA framework, thus creating the
SKPCA. The experimental results show the efficiency of SKPCA
technique with the proposed approach over the KPCA with the
standard sparse solution using randomly chosen frames and the
standard feature extraction techniques.

1. INTRODUCTION

The most commonly used feature extraction techniques used in
speech recognition are mel frequency cepstral coefficients (MFCC)
[1], linear prediction coefficients-cepstral (LPC-cepstral) coeffi-
cients [1] and perceptual linear prediction (PLP) coefficients [2].
They have already been very well analyzed and their efficiency
widely proved. However the development of a kernel-based ap-
proach to “manipulate” data in a feature space (a non-linear higher
dimensional space) came up with new concepts, in which the main
idea is to express the speech data in a higher dimensional space
to generate what would possibly be more discriminative speech
features.

This approach was firstly applied to Support Vector Machines
(SVMs) [3]–[4]. Some other examples of kernel-based learning
machines are Kernel Discriminant Analysis (KDA) [5], Kernel
Principal Component Analysis (KPCA) [6]–[12] and Sparse KPCA
[13]. The KPCA is a non-linear approach to PCA. It depends on
the training data to evaluate the higher dimensional principal com-
ponents and also to represent a certain input data in the feature
space. Depending on the training data amount these evaluations
could be unfeasible and/or cause a huge computational burden.
Considering this, the training data reduction is fundamental to the
KPCA realization. The standard frame reduction is performed by
choosing frames randomly, however these choices do not guaran-
tee that the reduced data well represent the original data set. The

SKPCA was developed to solve this problem by generating the
reduced data set through a likelihood maximization criterion.

The SKPCA technique can be separated into two blocks, the
re-estimation and the KPCA block. The covariance matrix used in
SKPCA approach is modeled as the weighted outer-product of the
training speech feature vectors plus an isotropic noise component,
and these weights are updated by the re-estimation block. These
weights generate the sparse solution for the KPCA, because they
represent a measure of how well a specific training vector con-
tribute to the likelihood maximization. Once obtained the reduced
data, the common KPCA technique is applied and the representa-
tion of a feature test vector can be generated.

Although the SKPCA generates a reduced training data, it re-
quires the full original training data to evaluate the maximization
step, which could be computationally unfeasible, depending on the
training data amount. In order to solve it, an approach is proposed,
where the original training data is clustered and the SKPCA is ap-
plied to these clusters. Despite this approach does not guarantee
that the overall data maximum is reached, it will be shown by ex-
perimental results that SKPCA could overcome the performance
of KPCA and standard feature extraction techniques.

The paper is structured as follows. In Section 2, a detailed
evaluation of PCA and KPCA techniques are described, empha-
sizing the main points to obtain SKPCA. In Section 3, the SKPCA
is explained, and it comprises the weights re-estimation, the fea-
ture space representation and the proposed approach. In Section 4,
experiments are presented assuring the efficiency of SKPCA. Fi-
nally, Section 5 presents the conclusions of this work and ideas for
future work, as well.

2. FEATURE EXTRACTION USING KERNEL PCA

2.1. PCA

PCA is a well-established technique for dimensionality reduction.
It represents a linear transformation where the data is expressed in
a new coordinate basis that corresponds to the maximum variance
“direction.”

Assuming that the data set consists of M centered observa-
tions xk ∈ �n, k = 1, . . . , M , and

�M
k=1 xk = 0, the sample

covariance matrix corresponding to this data set is given by

S =
1

M

M�

j=1

xjx
T
j = M−1XXT , (1)

where X = [x1, . . . ,xM ] represents the matrix of data.
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The principal components are obtained by solving the follow-
ing eigenvalue system of equations, SV = VΩ, where Ω is the di-
agonal matrix with the eigenvalues and V is an orthogonal matrix
of column eigenvectors of S. It is well-known that the eigenvec-
tors V can be obtained from the eigenvectors of the matrix XT X
of inner-products.

Having U as the orthogonal matrix of column eigenvectors
and Λ as the diagonal matrix of eigenvalues of M−1XT X, the fol-
lowing expression can be obtained, M−1XT XU = UΛ. After a
few algebraic procedures an expression where V is a function of U
can be obtained and it is given by V = XUΛ− 1

2 . This approach
is generally used when n � M , i.e., when the dimensionality of
xk is greater than the number of training samples. However this is
also essential to the KPCA development.

2.2. KPCA

The Kernel PCA is the technique which applies the kernel function
to the PCA technique, in order to obtain the representation of PCA
in a higher dimensional space [7]. The kernel functions are widely
used to solve the problem of nonlinear mapping (φ) to a higher
dimensional space, without using explicit mapping. This nonlinear
mapping is performed by using kernel functions as the dot product
of the mapped variables: φ : x · y → φ(x) · φ(y) = k(x,y).
The kernel matrix K is defined as the matrix whose indexes are
(K)ij = k(xi,xj).

Defining φ(xi) = φi, it can be said that φT
i φj = k(xi,xj),

and the mapping of the full data matrix X can be defined by a
(D ×M) matrix Φ = [φ1 . . . φi . . . φM ], where φi represents the
mapping of xi in a higher dimension D.

Analogous to equation (1), the covariance matrix in a feature
space is given by

SF =
1

M

M�
j=1

φjφ
T
j = M−1ΦΦT , (2)

and consequently the representation of the eigenvectors V in the

feature space is VF = ΦUKΛ
− 1

2
K , where UK and ΛK contain

the eigenvectors and eigenvalues of the kernel matrix K.
Finally, the KPCA representation of a test vector t is given

by the projection of the mapped vector φ(t) onto the eigenvectors
VF . It is mathematically expressed as Tkpca = VT

Fφ(t), where
Tkpca is a D dimensional column vector, which gives the KPCA
representation of φ(t). The final representation is shown as fol-
lows:

VT
Fφ(t) =

�
Λ

− 1
2

K

�T

UT
KΦT φ(t) = Λ

− 1
2

K UT
KkT

t , (3)

where kt represents a M dimensional column vector formed by
k(t, xi), for i = 1, . . . , M .

Although the KPCA is a powerful technique, it has the dis-
advantage of requiring the full training data to calculate K and
kt in (3), which could cause computational problems, as it was
mentioned in Section 1. A common solution to this problem is to
reduce the number of frames (full training data) by picking up N
frames randomly from the training data, as it was cited in [14].
Although this approach has shown an efficient performance in a
speech recognition task [12], it does not use the overall informa-
tion provided by the training data.

3. THE PROPOSED APPROACH TO SKPCA FEATURE
EXTRACTION

3.1. SKPCA

The SKPCA technique was developed in order to provide a solu-
tion for the previous mentioned disadvantage of the KPCA tech-
nique. It consists in estimating the feature space sample covariance
for a noise component and the sum of the weighted outer products
of the original feature vectors, which generate a sparse solutions
to KPCA. This is obtained by maximizing the likelihood of the
feature vectors under a Gaussian density model φ ∼ N (0,CF ),
where the covariance CF is defined by

CF = σ2I +
M�

i=1

wiφiφ
T
i = σ2I + ΦWΦT , (4)

where W is a diagonal matrix composed by the adjustable weights
w1, . . . , wM , and σ2 is an isotropic noise component, N (0, σ2I),
common to all dimensions of feature space. This approach was
based on the probabilistic PCA (PPCA) formulation [15].

The log-likelihood under the Gaussian model with covariance
CF given by (4), ignoring the terms independent of the weights,
is denoted by

L = −1

2

�
M log |CF | + tr(C−1

F ΦΦT )
�
. (5)

Differentiating (5) under the weights wi and making it equal
to zero, means to maximize the log-likelihood with respect to wi.
However, in order to reach better mathematical representation, (5)
should be decomposed. The first term of (5) can be decomposed
in M log |CF | = M(D log σ2 + log |W| + log |W−1

+σ−2K|) and the second term in tr(C−1
F ΦΦT ) =

�M
i=1 σ−2kii

− σ−4kT
i

�
W−1 + σ−2K

�−1
ki, where kii = k(xi,xi).

Now evaluating ∂L
∂wi

by differentiating the two terms of (5)
obtained above with respect to wi, the following expression is
achieved,

∂L
∂wi

=
1

2w2
i

�
MΣii − Mwi +

M�
j=1

µ2
ji

	
, (6)

where Σii and µji are respectively the diagonal components of
the matrix Σ = (W−1 + σ−2K)−1 and the elements of the col-
umn vector µj = σ−2Σkj . Setting (6) to zero, which means
to find the maximum of the function represented by the equation
(5), generates the re-estimation update functions for the weights,
wnew

i = M−1�M
j=1 µ2

ji + Σii. According to [13], an equation
for re-estimation update that converges faster than the one previ-
ously mentioned, can be obtained by rewriting (6) equal to zero
as

wnew
i =

�M
j=1 µ2

ji

M (1 + Σii/wi)
. (7)

Equivalently to the KPCA representation, the projection of a
test vector φ(t) onto the principal axes VF is calculated by

Tskpca = VT
Fφ(t) = Λ̃

− 1
2

K ŨT
K k̂T

t , (8)

where ŨK and Λ̃K are defined, respectively, as the eigenvectors
and eigenvalues of W

1
2 KW

1
2 , and k̂t represents the vector calcu-

lated by k(t, xi), where xi corresponds to the non-zero weighted
vectors represented in X.
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Fig. 1. Proposed approach.

3.2. Proposed approach

The proposed approach consists in making the SKPCA technique
computationally feasible for a data set with a great number of sam-
ples, which is an usual situation in speech recognition.

Generally, in speech recognition the amount of training data
tends to be large, for example, in this work the training data com-
prises about 1,200,000 frames, and with this number of frames
the SKPCA re-estimation in equation (7) is computationally un-
feasible, once it depends on the kernel matrix K to calculate Σ.
In order to overcome this limitation, it is proposed to divide the
full training data into clusters of L frames, then merge the clus-
ters forming new clusters of 2L frames, which are reduced to L
frames by using SKPCA. The process is repeated successively un-
til obtaining just one cluster of L frames, which is the final num-
ber of frames desired to represent the full training data, as shown
in Figure 1. The weights wi are just used to select the most repre-
sentative training vectors considering the likelihood maximization.
Thus, they are not included in the following frame reduction step
and neither in the SKPCA feature representation procedure.

The total number of steps necessary to reduce the l clusters
of L frames to just one cluster, is given by step = log2l, where
step is the number of steps. The “ideal” approach is to perform
the re-estimation in (7) over the training database as a whole, how-
ever it is not realizable due to the computational reasons mentioned
before. Considering this, the proposed approach does not guaran-
tee to reach the overall data maximization, just individual cluster
maximization. However as it will be shown in Section 4, its perfor-
mance overcomes the standard randomly chosen frames approach
used in KPCA.

4. EXPERIMENTAL WORK

In order to evaluate the efficiency of this technique, a speaker-
independent isolated word recognition experiment was conducted.
The experiment consisted in using a larger database, a 520 Japanese
words vocabulary with 80 speakers (40 males and 40 females) ex-
tracted from the C set of the ATR Japanese database. The training
data was composed of 10400 utterances and the remaining 31200

utterances were used as test data. This configuration was used due
to the original database characteristics (label files) and also to pro-
vide enough statistical reliability to the experimental results.

4.1. Settings

The sampling rate of speech signal was 10 kHz. Mel-cepstral coef-
ficients were extracted through a 12-th order mel-cepstral analysis
using 25.6 ms Hamming windows with 10 ms shifts. The feature
vectors were obtained from the 13 mel-cepstral coefficients and
their delta (∆) and acceleration (∆∆) coefficients, which corre-
spond to a vector of 39 coefficients.

In order to calculate the matrix K for the KPCA case, it was
used N equal to 256 and 512 frames, which were randomly picked
up from the full training data, and for the SKPCA case, it was used
L=256 frames and N equal to 256 and 512 frames. The number
N was chosen such that the system was computationally feasible.

Each word was modeled using 12 state HMMs (Hidden Markov
Models) with single mixture of diagonal covariance, and as for the
kernel function, it was used a polynomial kernel function such as
k(x,y) = (x · y + 1)p.

4.2. Results

The baseline error rate of the standard features was 8.36%, when
13 mel-cepstral coefficients and their ∆ and ∆∆ were used as a
feature vector, and the PCA best result with full training data was
7.70% of error rate for dimensionality 32 and column wDA (with
Delta and Acceleration characteristics).

The proposed approach in Section 3.2 was applied using L=256.
The reduced number of frames N was obtained according to L,
i.e., the training data set obtained by using L=256 was used in
N=256, and the training data set for N equal to 512 was obtained
by merging the final clusters achieved in (step−1) steps. In other
words, the data set when N=256 is a subset of the data set when
N=512, as it is shown in Figure 2, which is a simplified version of
Figure 1 focusing on the number of frames N .

Table 1 shows the performances using N=256 of KPCA &
p=1, which represents the PCA with a reduced training data, KPCA
& p=2 and SKPCA & p=2, where the columns wDA and w/DA
(without Delta and Acceleration) refer to the feature vector repre-
sentation with and without the ∆ and ∆∆ coefficients applied af-
ter the feature extraction technique, respectively. The best perfor-

L

MERGEMERGEMERGE

MERGE MERGE

MERGE

SKPCA SKPCA

SKPCA

LL

L L L

... ... ... ...

L

N = L

N = 2L

N = 4L

.

.

Fig. 2. Proposed approach focusing on the number of frames N .
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Table 1. Error rate (%) of the system using KPCA with a 1st and 2nd

degree polynomial kernel function, SKPCA with 2nd degree polynomial
kernel function and N equal to 256. The columns w/DA and wDA repre-
sent respectively the feature vectors not using and using ∆ and ∆∆. The
symbol “∗” means “it does not apply.”

N=256
KPCA & p=1 KPCA & p=2 SKPCA & p=2

dim w/DA wDA w/DA wDA w/DA wDA
8 22.16 8.61 25.91 7.92 25.21 8.36
13 22.96 7.99 25.62 7.48 22.05 6.37
16 19.79 8.72 25.13 7.70 21.73 6.42
32 11.81 9.94 18.44 7.43 17.04 7.15
39 12.88 11.77 18.22 7.77 16.68 7.42
64 ∗ ∗ 20.44 9.45 19.62 9.02
128 ∗ ∗ 28.60 14.92 25.04 13.15

Table 2. Error rate (%) of the system using KPCA with a 1st and 2nd

degree polynomial kernel function, SKPCA with 2nd degree polynomial
kernel function and N equal to 512.

N=512
KPCA & p=1 KPCA & p=2 SKPCA & p=2

dim w/DA wDA w/DA wDA w/DA wDA
8 22.61 8.43 24.60 7.88 22.55 7.51
13 23.19 8.07 24.54 7.35 21.31 6.30
16 21.09 8.32 23.44 7.59 19.12 6.29
32 11.48 10.06 17.61 7.29 14.00 6.97
39 13.28 12.29 17.62 7.85 13.88 7.05
64 ∗ ∗ 22.01 9.95 17.72 8.74
128 ∗ ∗ 31.93 17.66 23.87 13.90

mances were respectively, 7.99% (dimension 13), 7.43% (dimen-
sion 32) and 6.37% (dimension 13) of error rate for column wDA.
It is observed that the SKPCA overcame all the others techniques,
and as it was expected the PCA with full training data reached a
higher performance than KPCA & p=1, which possibly was due to
the data reduction for the KPCA case. Thus, this work was focused
on 2nd degree polynomial kernel function.

Table 2 shows the equivalent characteristics of Table 1, ex-
cept that N=512 frames. The best performances were respectively,
8.07% (dimension 13), 7.29% (dimension 32) and 6.30% (dimen-
sion 13) of error rate for column wDA. The results presented in
this table confirmed the efficiency of SKPCA over the PCA with
full training data, KPCA & p=1 and the baseline, as mentioned
previously.

Comparing the best performances for KPCA and SKPCA in
both tables, it is noticed that the performances degrade when the
number of frames is reduced, except for the KPCA & p=1 with
wDA. This could be explained by the elimination of important data
information from the data set with 512 frames when it is reduced
to 256 frames, once the data set for N=256 is a subset of the data
set for N=512. The overall best performance was 6.30% of error
rate using SKPCA with 13 dimensions and wDA for N=512.

5. CONCLUSIONS

In this paper, the SKPCA technique with the proposed approach
was applied for feature extraction in speech recognition. As it was
expected the SKPCA provided a better representation of the re-
duced training data than the one obtained by the standard randomly
chosen frames approach used in KPCA. The overall best perfor-
mance 6.37% of error rate (ER) (dimensionality 13, wDA, SKPCA

and N=512) generated error rates reduction of 24.6%, 21.2% (di-
mensionality 13, wDA, KPCA & p=1 and N=256), 18.2% and
13.6% (dimensionality 32, wDA, KPCA & p=2 and N=512) over
the baseline (8.36% ER) and the best performances of KPCA &
p=1 (7.99% ER), PCA (7.70% ER) and KPCA & p=2 (7.29% ER),
respectively. The results confirmed the efficiency of SKPCA and
the proposed approach for this task.

Despite the technique presented in this paper has considerably
improved the recognition performance of the analyzed task, it is re-
quired further research in order to observe carefully the effects of
using different techniques to cluster the full training data to make
the SKPCA re-estimation realizable. Besides the previous men-
tioned topic, further study on other kernel-based sparse approaches
and different kernel-based learning machines are the natural future
steps of this work.
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