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ABSTRACT 

The aim of this work is to improve distributed speech 
recognition accuracy in packet loss by considering the effect of 
loss on the temporal derivatives of the feature vector. Analysis of 
temporal derivatives reveals they suffer severe distortion when 
static vectors are lost in times of packet loss. The application of 
missing feature theory and soft-decoding techniques are 
considered for compensating against packet loss at the decoding 
stage of recognition. An extension to these methods is developed 
which considers the static, velocity and acceleration components 
separately. A series of confidence measures for the temporal 
derivatives is devised and applied within the soft-decoding 
framework. Experimental results on both a connected digit task 
and a large vocabulary task demonstrate significant increases in 
recognition accuracy under a range of packet loss conditions. 

1. INTRODUCTION 

The growth of mobile and handheld devices for speech 
communication has resulted in distributed speech recognition 
(DSR) systems being developed. The European 
Telecommunication Standards Institute (ETSI) Aurora DSR 
standard [1] offers good robustness to noise by replacing the low 
bit-rate speech codec on the terminal device with the static 
MFCC feature extraction component of the speech recogniser.  

DSR is poised to become the principle technology for 
accessing speech enabled services on 3G mobile networks. These 
are often best effort packet-switched networks that do not 
guarantee reliable delivery. Packets may become corrupt due to 
low signal strength or dropped due to network congestion, 
resulting in portions of the feature vector stream becoming lost. 1

Work on packet loss compensation for DSR can be divided 
into three broad groups.  The first group attempts to increase the 
probability of correctly receiving the feature vectors through 
source-coding techniques [1][2]. However, these methods 
require additional operations on the client device, which may not 
be possible as the Aurora DSR standard defines the functionality 
of the client and the payload format. The second set of 
techniques concentrate solely on the server side of the DSR 
system which is not defined by the standard. These schemes 
typically attempt to reconstruct the feature vector stream prior to 
recognition, using methods such as repetition [1], interpolation 
and statistical methods [3] and work reasonably well for short 
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duration bursts of loss but degrade as burst lengths increase. The 
third category concentrates on compensating for lost vectors 
inside the recogniser itself using ‘soft-decoding’ [5,7] or its 
subset missing feature theory [4,6].  

In the ETSI Aurora DSR standard, static feature vectors are 
received across the network and missing vectors are 
reconstructed using ‘nearest-neighbour repetition’ [1]. Temporal 
derivatives are then calculated from the reconstructed static 
vector stream using regression [8]. This means the loss of a 
single static feature vector will affect several temporal 
components. Therefore it is clear that the treatment of velocity 
and acceleration components should depend not only on the 
status of the current static vector, but also on those that surround 
it. However, most previous work on soft-decoding has treated 
the temporal components of the entire feature vector as a whole.  

The aim of this work is to improve the accuracy of 
distributed speech recognition in the presence of packet loss 
through more effective compensation of the temporal 
derivatives. Section 2 examines the effect that packet loss has on 
the temporal derivatives of the feature vector stream. Soft 
decoding methods are reviewed in section 3 and an extension 
proposed for treating temporal derivative separately from the 
static component. Experimental results for the proposed methods 
are presented in section 4 and a conclusion made in section 5. 

2. THE EFFECT OF PACKET LOSS ON 
TEMPORAL DERIVATIVES

When compensating for missing static vectors it is important to 
consider their effect on both the velocity and acceleration 
derivatives which will subsequently be included in the feature 
vector at the back-end. Temporal derivatives are computed using 
the regression formulae given in equations 1 and 2, where Wv

and Wa are the number of vectors either side of the current frame 
used to calculate the velocity and acceleration components. In 

this work Wv=3 and Wa=2 and S
tx , V

tx  and A
tx  represent the 

static, velocity and acceleration derivatives at time t,
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For illustration, figure 1 shows the static, velocity and 
acceleration values for MFCC(1) over a period of 50 frames. 
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Two bursts of packet loss have been introduced; a single vector 
loss at frame 11 and an 8 vector loss starting at frame 31. The 
solid line shows the original loss-free coefficients while the 
dashed line shows the same coefficients but with repetition used 
to estimate the missing static vectors.  
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Figure 1:  a)-static, b)-velocity and c)-acceleration of MFCC(1) 

The figure clearly shows how distortion from the static features 
propagates into the velocity and acceleration derivatives and 
becomes worse as the burst length increases. In extreme cases, 
when the burst length exceeds 1 frame less than the window 
width used to the compute the derivate, the derivative will take a 
zero-valued result. This can be seen for the velocity derivatives 
for frames 33, 34 and 35. This distortion of the velocity 
component will also propagate to the acceleration component. In 
fact a burst of loss of b frames will affect 2Wv+b velocity 
components and 2(Wv+Wa)+b acceleration components. These 
results suggest that, as channel condition worsens, the temporal 
derivatives will become distorted more quickly than the static 
vector stream and have little, or even a negative effect, on 
recognition results. 

3. SOFT DECODING FOR PACKET LOSS 
COMPENSATION 

Missing feature theory [4,6], or ‘hard decoding’, is a technique 
whereby the Viterbi decoding stage of recognition is altered to 
account for missing vectors in the feature vector stream. The 
probability of observing the tth feature vector, xt, in the jth state of 
the HMM is given by bj(xt). In missing feature theory this is 
changed to, 

t
tjtj bb

ρ
)()(' xx =    (3) 

where ρt = 1 if the tth feature vector is received, or ρt = 0  if it is 
not. Therefore, if ρt = 0  the value of b’j(xt)=1 for all j, and the 
observation will have no influence on the path chosen by the 
Viterbi decoding algorithm. Instead the path will depend wholly 
on the prior information represented by the HMM state-
transition matrix.  

The above method assumes that if a vector is lost, no 
knowledge can be inferred about its value. However, due the 
temporal correlation of the feature vector stream this is not the 
case. Indeed, lost vectors can be replaced with estimates based 
on the surrounding received vectors with good results [3]. 

So called ‘soft-decoding’ [5,7] methods extend the Missing 
Feature Theory framework by using a two stage approach. First, 
the missing static vectors are reconstructed and the temporal 

derivatives calculated. Secondly, recognition is performed using 
the altered observation probability, b’j(xt), but allowing the 
parameter ρt to take on an arbitrary value (0 ≤ ρt ≤ 1). Here, ρt

can be thought of as a measure of confidence for the estimate of 
the tth feature vector, such that ρt=1 if the tth vector is not 
affected by packet loss or 0 ≤ ρ t< 1 otherwise. 

As shown in figure 1, if a static feature vector is received 
close to a burst of packet loss, it may be the case that the 
temporal derivatives associated with that vector will be affected 
by losses in neighbouring frames. Thus, the confidence measures 
for the static, velocity and acceleration components for each 
vector must be calculated separately. Therefore, assuming 
diagonal covariance, the observation probability can be divided 
into its separate components for static, velocity and acceleration. 
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where ( )S
i

S
jb x , ( )V

i
V
jb x  and ( )A

i
A
jb x  represent the static, velocity and 

acceleration components of the observation calculation. These 
are scaled by ρt

S, ρt
V and ρt

A which represent the confidence of 
the individual temporal components. The remainder of this 
section deals with how to best calculate these values. 

3.1 Static component confidence 

This section considers the calculation of confidence measures for 
the static feature vectors. Due to the correlation within the 
feature vector stream, vectors estimated close to the edge of a 
burst are more accurate than those estimated towards the middle. 
Thus, the value of ρt should vary, starting at the highest point 
(closest to 1) at the edges of the burst and dropping to a 
minimum at the mid-point of the burst. Various methods for 
varying ρt can be found in the literature [5]. Varying the 
confidence parameter linearly  leads to the following calculation, 

linear
S
t nγρ −= 1    (5) 

where n is the number of frame indexes between the tth vector 
and the closest edge of the burst of loss, i.e., 

),min( tNNtn afterbefore −−=      (6)

where Nbefore and Nafter are the frame indexes of the first correctly 
received vector before and after the burst of loss. The parameter 
γlinear represents the rate that the confidence of the estimation 
falls off. A floor is applied to ensure that ρt ≥ 0. An alternative 
approach is to vary the value of ρt exponentially,

n

lexponentia

S
t γρ =    (7)

where γexponential is a parameter representing the rate at which the 
confidence of the estimation decreases. The parameters γlinear and 
γexponential can be derived experimentally. Research by Cardenal-
Lopez et. al. [5] has shown that optimum values are in the region 
of γlinear=0.1 and γexponential=0.7, which is confirmed in this work. 

3.2 Temporal derivative component confidence 

As stated above, the confidence measures for the temporal 
derivatives should be calculated separately from those of the 
static vectors. As each temporal derivative component is 
calculated from a sliding-window on the next lower-order 
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temporal derivative, it is expected that the confidence measure 
for any component should be related to those within its sliding 
window. Therefore, the following methodology is proposed. 
First, the static confidence measures are calculated using those 
methods outlined in section 3.1. Secondly, the confidence 
measures for the velocity components are calculated as a 
function of the static confidence measures within the window, 
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 (8) 

Similarly, the confidence measures for the acceleration 
components are computed from those of the velocity,
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The remainder of this section proposes three schemes to 
calculate the confidence of the temporal derivatives based on an 
exponential confidence measure applied to the static component. 
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Figure 2: Temporal component confidence measures for a) hard 
decoding, b) product of measures and c) regression method.

3.2.1 Hard decoding of temporal derivatives 
The hard decoding of temporal derivatives is the most severe 
method of computing the confidence measures. In the 
computation of the temporal derivatives, if any elements have 
been affected by packet loss then the confidence measure is set 
to zero. To illustrate this, figure 2a shows a simulated packet loss 
profile where 0 indicates loss and 1 no loss. Figure 2b shows the 
resulting confidence measure for the static (solid line), velocity 
(dashed line) and acceleration (dotted line) components using 
the hard decoding method. The figure shows that Wv velocity 
components either side of the loss are ignored in the decoding 
process. Similarly, Wv+Wa acceleration components are ignored 
either side of the loss. As the figure shows this scheme results in 
large numbers of temporal derivatives being removed from the 
decoding process. It is interesting to note that the confidence 
measure of the velocity component corresponding to an isolated 
static vector loss is 1. This is because the velocity measurement 
at time, t, does not consider the static value at time t.

3.2.2 Product of confidence measures method 
This scheme calculates the confidence of the velocity derivative 
as the product of the static confidences under the velocity 
window. The confidence of the acceleration derivative is then 
computed as the product of the velocity confidences under the 
acceleration window, i.e. 

∏
−=

+=
Wv

Wv

S
t

V
t

φ
φρρ ∏

−=
+=

Wa

Wa

V
t

A
t

φ
φρρ                       (10) 

Figure 2c shows the resulting confidence profiles for the velocity 
and acceleration derivatives. These are not as severe as those 
with hard decoding and allow the temporal derivatives to have 
more impact in recognition. 

3.2.3 Regression based method 
In this method the confidence of the velocity component is 
obtained by applying the static component confidence measures 
to the regression equation used to compute velocity (eq. 1). 
Similarly the confidence of the acceleration is obtained by 
applying the confidence of the velocity components to the 
acceleration regression equation. The confidences are given as, 
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Figure 2d shows the regression-based velocity and acceleration 
confidence measures.  

4. EXPERIMENTAL RESULTS 

This section examines the effect of applying the soft-decoding 
methods on two recognition tasks, a small vocabulary (connected 
digit) task and a large vocabulary task. The static feature vectors 
comprise MFCC(1-12) and a log-energy term resulting in a 13-
dimensional vector. As per the ETSI Aurora standard, each 
packet carries two feature vectors (a single frame pair). If a 
vector is lost it is reconstructed using nearest neighbour 
repetition [1]. 

As shown in [3], two metrics are considered for 
characterising network channel conditions; the packet loss rate,
α, and the average burst length, β. Four simulated channel 
conditions are used in these tests as shown in table 1. Although 
the higher values chosen for these parameters might be seen as 
excessively large, research has shown that packet loss conditions 
can be this severe, although only for short periods of time.  

Packet loss rate, α Av. burst length, β
Channel A 10% 4 packets 
Channel B 10% 20 packets 
Channel C 50% 4 packets 
Channel D 50% 20 packets 

Table 1: Simulated channel conditions 

4.1 Results on the ETSI Aurora connected digit database 

Experiments are performed on the Aurora connected digit 
database [1]. Digits are modelled using 16-state, 3-mode HMMs, 
trained from the set of clean digits. The test set comprises 1001 
noise-free digits strings.  

4.1.1 Recognition with static components only 
This section compares methods of estimating the confidence for 
the static component only, as described in section 3.1. In order to 
focus on the static components, these methods were compared 
using a recogniser that uses only static feature vectors and has a 
baseline accuracy of 96.6%. Results for the confidence measures 
described in section 3.1 over the four channel conditions are 

a)

b)

c)

d)
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shown in table 2. As a comparison, results using repetition only 
and hard decoding are  shown. 

The results show that the soft-decoding methods improve 
performance over that of hard-decoding by a significant margin. 
Although results using the soft-decoding methods are similar, 
exponential weighting generally outperforms linear weighting. 

 A B C D 
NN Repetition only 94.2 89.7 82.6 62.5 
Hard decoding 94.7 90.7 83.4 64.8 
Linear soft-decoding 95.2 91.6 86.5 67.8 
Exponential soft-decoding 95.3 91.4 86.8 68.2 

Table 2: Static only soft-decoding using Aurora 

4.1.2 Recognition with temporal derivatives 
This section now uses the exponential variation of the static 
confidence measures of the previous section in combination with 
the three methods of computing confidences for the temporal 
derivative described in section 3.2. In the event of packet loss 
the missing static feature vectors are estimated by repetition 
before temporal derivatives are computed. Table 3 shows results 
for repetition only and then combined with the three temporal 
derivative confidence measures. Baseline accuracy for the 39-D 
feature vector with no packet loss is 99%. 

 A B C D 
NN Repetition only 96.7 91.6 83.0 60.6 
TD Hard decoding  
TD Product  
TD Regression 

97.6
97.6
97.9

93.6 
93.9 
93.9 

88.3
89.8
91.0

70.7
71.1
71.8

Table 3: Soft decoding with temporal derivatives using Aurora 

Applying the confidence measures gives a substantial 
improvement in accuracy over the simple repetition-only 
compensation. Of the three temporal confidence measures the 
hard decoding gives the smallest increase in performance, 
suggesting that it removes too much information from the feature 
vector stream. The regression based calculation gives best 
performance which indicates the importance of considering the 
relative contribution of each element in the temporal derivative 
calculation. 

4.2 Results on the WSJCAM0 large vocabulary database

This section broadens the evaluation of the packet loss 
compensation techniques to large vocabulary continuous speech 
recognition in the form of the 5000 word WSJCAM0 task. In 
this experiment a standard 5000 word closed bigram language 
model was used together with a set of 3-state, 20-mode 
monophone HMMs. Testing used a set of 100 utterances from 
the development set which gave a baseline word accuracy of 
81% using temporal derivatives (39-dimensions) and 54.6% with 
static only (13-dimensions). Table 4 shows results for three 
configurations. NN Repetition only represents the case of no 
soft-decoding and recognition using temporal derivatives. Static 
only soft-decode shows results for recognition using only the 
static vectors and soft-decoding using exponential variation. TD 
Regression extends the soft-decoding method to include the 
temporal derivatives with their confidence measures calculated 
using regression – section 3.2.3. 

 A B C D 
NN Repetition only 
Static only soft-decode 

70.4 
49.5 

69.3
47.7

34.3 
28.1 

25.9 
22.0 

TD Regression 75.7 72.7 47.3 38.9 
Table 4: Soft decoding using WSJCAM0

These results follow a similar pattern to those presented for the 
Aurora digit database. Removing the temporal derivatives in the 
static-only configuration results in more severe degradation of 
performance than with the Aurora system, suggesting that the 
temporal derivatives are more important for the large vocabulary 
task than the smaller connected digit task. Using soft-decoding 
with temporal derivatives results in significantly improved 
accuracy in poor channel conditions. 

5. CONCLUSIONS 

This work has shown that packet loss has a wider effect on the 
temporal derivative components of the feature vector stream than 
on the static components. In severe packet loss this leads a to 
substantial distortion of the temporal derivatives. A novel 
extension to traditional soft-decoding techniques has been 
proposed whereby the temporal derivatives are decoded using 
confidence measures that take into account this widening effect.  
Three possible methods for calculating the confidence measures 
for the temporal derivative components have been considered. 
Of these methods the regression based method was shown to 
offer the greatest increase in accuracy. This method is based on 
the regression equation used to calculate the temporal derivatives 
and takes into account the varying contributions of the lower 
order temporal derivatives within the calculation window. 
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