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ABSTRACT

We present a novel acoustic model of speech, based on statis-
tical hidden trajectory modeling (HTM) with bi-directional vocal
tract resonance (VTR) target filtering, for speech recognition. The
HTM consists of two stages of the generative process of speech:
from the phone sequence to VTR dynamics and then to the cepstrum-
based acoustic observation. Two types of model implementation
are detailed, one with straightforward two-stage cascading, and
another which integrates over the statistical distribution of VTR in
model construction and in computing acoustic likelihood. With the
use of first-order Taylor series approximation to the nonlinearity in
the VTR-to-cepstrum prediction component of HTM, the acoustic
likelihood is established in an analytical form. It is a Gaussian
with the time-varying mean that gives structured long-span con-
text dependence over the entire utterance, and with the dynami-
cally adjusted variance proportional to the squared “local slope” in
the nonlinear mapping function from VTR to cepstrum. When the
HTM parameters are trained via maximizing this “integrated” like-
lihood, dramatic reduction of an upper error bound is achieved in
the standard TIMIT phonetic recognition task using a large-scale
N-best rescoring paradigm.

1. INTRODUCTION

Modeling hidden dynamics in the temporal structure of human
speech has been a salient theme in recent speech recognition re-
search (e.g., [1, 2, 3, 6, 8, 7, 9, 10, 11]) providing a potential to
overcome fundamental limitations of the HMM, especially those
related to recognizing highly reduced, spontaneous speech. One
specific type of such modeling approaches is exemplified by the
hidden trajectory model (HTM), where the hidden dynamics take
parametric forms of temporal functions defined in a non-recursive
manner. This offers implementational advantages over the recur-
sive forms of hidden dynamic models (e.g., [2, 3, 9]). In the ear-
lier work on HTM, various parametric forms of temporal functions
with the properties of target-directedness and of uni-directional
coarticulation have been proposed and positively evaluated [3, 11].
Two significant extensions of the earlier HTM have been recently
developed and will be reported in this paper. First, the uni-directional
coarticulation model in the vocal tract resonance (VTR) hidden
space is extended to the bi-directional model via finite-impulse
response (FIR) filtering of both forward and backward VTR tar-
gets. This overcomes the heuristic boundary-shift rule used in [11]
for handling bi-directional coarticulation within the framework of

Xiang Li (xiangl@cs.cmu.edu) was a summer student intern at Mi-
crosoft Research from Carnegie Mellon University.

I-337

uni-directional, target-directed hidden trajectory modeling. Sec-
ond, compared with the HTM of [11] where the mapping function
from the hidden VTR space to the observed acoustic space was
implemented via a mixture of linear functions with a large number
of trainable parameters, the new model presented in this paper ex-
ploits an analytical nonlinear mapping function developed in our
recent work of [5], offering more precise and yet more parsimo-
nious account for the speech dynamics in the observed acoustic
(cepstral) domain.

Some detailed analyses of coarticulatory properties, includ-
ing phonetic reduction, as exhibited by the bi-directional target-
filtering HTM were presented recently in [4], where scientific ev-
idence supporting the underlying concept of the model was pro-
vided. The focus of the current paper is on ways of implementing
this HTM for the purpose of automatic speech recognition using
the measured cepstral features. We have implemented two versions
of the model, one with straightforward cascading of two stages in
the model; i.e., passing the output of the VTR trajectory model
(stage 1) directly as input to the VTR-to-cepstrum mapping func-
tion (stage II), and another which integrates the two stages of the
model in computing the likelihood of acoustic observations.

The organization of this paper is as follows. In Sec. 2, the
HTM consisting of two stages of the speech generative process is
outlined. Two ways of model implementation, cascaded one and
integrated one, are presented in Secs. 3 and 4, respectively. HTM
parameter training is described in Sec. 5. We provide experimen-
tal results in Sec. 6 on a standard TIMIT phonetic recognition task
based on N-best rescoring, which demonstrates significant advan-
tages of the integrated HTM implementation.

2. THE HIDDEN TRAJECTORY MODEL WITH
BI-DIRECTIONAL TARGET FILTERING

2.1. Model stage 1

Stage I of the novel HTM presented in this paper is responsible
for converting a sequence of VTR targets with discrete jumps at
the phone segments’ boundaries into a smooth dynamic pattern
(i.e., trajectory) across all these boundaries. Forward as well as
backward coarticulation occurs when the bi-directional filtering
and smoothing process makes the VTR value at each time depen-
dent on not only the VTR target at the current phone, but also the
VTR targets from the adjacent phones.

The HTM developed in this work gives quantitative prediction
of the magnitude of contextually assimilated reduction. It is con-
structed using a slowly time-varying, FIR filter characterized by
the non-causal, vector-valued, impulse response function of

hs(k) = c'yf<k)7 for 0<k<D €))
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and symmetric for —D < k < 0, where c is a normalization con-
stant. 7y (k) is the segment-dependent “stiffness” parameter vector,
one component for each resonance. D in (1) is the unidirectional
length of the impulse response, representing the temporal extent of
coarticulation.

Given the filter’s impulse response and the input to the filter
as the segmental VTR target sequence T'(k), the filter’s output as
the model’s prediction for the VTR trajectories is the convolution
between these two signals. The result of the convolution within
the boundaries of the home segment s is

k+D

zs(k) = hsuy * T'(k) = Z CTS(T)’YLIET_)T|7 2
T=k—D

where the input target vector’s value and the filter’s stiffness vec-
tor’s value typically take account not only those associated with the
current home segment, but also those associated with the adjacent
segments.

2.2. Model stage I1

Stage II of the HTM converts the VTR vector z(k) at each time
frame k into a corresponding vector of LPC cepstra o(k). Thus,
the smooth dynamic pattern of z(k) as the output from Stage I is
mapped to a dynamic pattern of o(k).

To describe this mapping function, we decompose the VTR
vector into a set of K resonant frequencies f = (f1, f2, ..., fx)’
and bandwidth b = (b1,b2,...,bk)’, and let z = (f b)’. Then
the statistical mapping from VTR to cepstrum, which constitutes
Stage II of the model, is represented by

o(k) = F(zs(k)) + pr, + vs(k), 3)

where v is a subsegment-dependent,' zero-mean Gaussian random
vector: vs ~ N(v;0,02.), and pur, is a subsegment-dependent
bias vector for the nonlinear predictive function F(zs).

In (3), the output of the mapping function F(z) has the fol-
lowing parameter-free, analytical form [5] for its n-th vector com-
ponent (i.e., n-th order cepstrum):

Fulk) = % > ™5 cos(2mn L2E) "stk) ), )

where fs is the sampling frequency, and P is the highest VTR
order.

3. CASCADED IMPLEMENTATION

In this implementation, we assume that given the segment s, there
is no variability in the VTR targets for a fixed speaker and con-
sequently there is no variability in the VTR variable z in each
frame within the segment. (Such variability is absorbed into the
random component in model stage II.) That is, both z and 71" are
treated as deterministic instead of random variables. Hence we
have p(z|s) = 1 for z = Zmaa as generated from the FIR fil-
ter, and p(z|s) = O otherwise. Segment-dependent and speaker-
specific targets T in the training data are obtained by an iterative
adaptative algorithm that adjusts 7s so that the FIR output from

IFor notational simplicity, we use the same label s to denote a segment
as well as for a subsegment.

(2) matches, with minimal errors, the automatically tracked VTR
produced from the algorithm described in [5]. For the test data, tar-
gets are estimated using an algorithm similar to vocal tract length
normalization techniques.

To compute the acoustic likelihood required for scoring in
recognition, the above stage-1 output z = 2,44, as the determinis-
tic signal, is passed to model’s stage-1I to produce the cepstral pre-
diction F(zmaz(k)) on a frame-by-frame basis. For each frame of
the observed cepstral vector o(k) within each segment s (or sub-
segment), we have the following approximate likelihood score:

Plo(k)|3) ~ maxp(o(k) (k). s)p(=(k)|3)
~ p(0(R)]2mas (k). )P zonas (R)]s) = P(o(k) | zma (K), )
= N [o(k): F(zmas (k) + pir,. %, )

This Gaussian likelihood computation is done directly using the
HTK’s forced-alignment tool (Hvite) for the N-best rescoring ex-
periments (to be presented in Sec. 6).

Training of model parameters (,urs,afs) is carried out in a
similar way, using the same assumption and approximation as above.
This is also easily accomplished using the HTK tool for training
monophone HMMs on the cepstral residuals after the model pre-
diction is subtracted from the cepstral data.

4. INTEGRATED IMPLEMENTATION

This more elaborate implementation removes the assumption in
the above cascaded implementation that the VTR target 7" or VTR
z is deterministic and that the optimal VTR vector zmqz is not a
function of the acoustic observation o(k). Instead, we incorporate
uncertainty in 7" (or equivalently in z) in the formal model con-
struction and in computing the acoustic likelihood. This likelihood
scoring is essential for speech recognition, and is accomplished by
marginalizing (integrating) over the statistical distribution of VTR
variables.

4.1. Characterizing VTR uncertainty in model stage-I

In order to perform the marginalization, we first need to character-
ize the VTR uncertainty in terms of its statistical distribution. In
the current implementation, for each gender (not denoted here for
simplicity) and for each segment s, we assume a separate Gaussian
distribution for the target:

p(T|s) = N(T; pur,, 07,).

Given a sampled target sequence T’sx) from this distribution,
we have the random VTR trajectory z(k) in the form of (2). Hence
we have the Gaussian distribution (gender-specific) for VTR:

p(z(k)|s) = Nz(k); p= (), 02 (k)] (©)
where
k+D
k—T1
I’Lz(k) = Z C(’Ys(f))HTS(T)’YLm‘
T=k—D
and
k+D
2|k—1
olk) =D ()t vy - )
T=k—D

In our implementation, VTR target means pr, and variances
0%5 above are estimated using sample statistics for the empirically
estimated VTR targets for each of the speakers in the training set.
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4.2. Linearizing cepstral prediction in model stage-I1

In order to perform the marginalization, we also need to charac-
terize the cepstrum uncertainty in terms of its conditional distribu-
tion on the VTR, and to simplify the distribution to a computation-
ally tractable form. That is, we need to specify and approximate
p(o|z, s).

For the simplest case where Gaussianity is assumed for subsegment-

dependent cepstral prediction residuals as in the current implemen-
tation, we have

plo(R)|2(k), ) = N [o(k); Flz(0)] + pir, 02 ] (®)

For computational tractability in marginalization (next subsec-
tion), we need to linearize the nonlinear mean function of F[z (k)]
in (8). To do this, we use the following first-order Taylor series
approximation to the nonlinear mean function:

Fla(k)] = Flzo(k)] + F [20(k)l(2(k) — z0(K)), (9

where the components of the Jacobian F'[] can easily computed
in a closed form using (4).

Substituting (9) into (8), we obtain the approximate condi-
tional acoustic observation probability where the mean p,, is ex-
pressed as a linear function of the VTR variable z:

plo(k)|2(k), s) = No(k); o, (k), 07, ], (10)

where

o, (k) = F'[20 (k)] 2(k)+{Fz0(k)] + pir, — F[20(K)]20(K)} .

v

Bs

4.3. Marginalizing VTR uncertainty

Given the results above, the marginalization over the random VTR
variable z in computing the acoustic likelihood can be proceeded
analytically as follows:

plo(k)[s) = /p(O(k)\Z(kLS)I)(Z(ki)l-@)dz

Q

[ N0 110,102, % Mo 1 (1), 02 ()] =

N [o(k) = Bas F'lz0 (k)] x az (k) o7, + (F' [z (W) 02 (k)]

(2m)~°° (o(k) = fio, (K))?

waﬂmmmwwf”*mzﬂﬂmmwwﬂ
where the (time-varying) mean of this Gaussian distribution

fio, (k) = o, |=(k)=p. (0= F [20(k)]pz (k) + Bs

is the expectation of ., (k) over z(k) (i.e., when the VTR ran-
dom variable z(k) is replaced by its mean p (k)). The final result
of (11) is intuitive. For example, when the Taylor series expan-
sion point is set at zo (k) = p=(k), (12) is simplified to fio, (k) =
Flu=(k)] + pr,, as the noise-free part of prediction. Also, the
variance in (11) is increased by a quantity of (F'[z0(k)])?c2(k)
compared with the corresponding variance afs in the cascaded im-
plementation. This magnitude of increase reflects the newly intro-
duced uncertainty in the hidden variable, measured by o> (k) as
computed from (7). The variance amplification factor (F' [zo(k)])?
results from the local “slope” in the nonlinear function F[z] which
maps from VTR z(k) to cepstrum o(k). Note that in (11), the vari-
ance changes dynamically as a function of time frame, instead of
as a function of segment as in the conventional HMM.

12)

an

/ No(k); /120 (1))2(k) + B, 02, ] x N12(k); iz (), 02 (k)] d=

}

5. ML TRAINING OF RESIDUAL PARAMETERS

In the cascaded implementation, the parameters of the cepstral pre-
diction residuals, /15 and o2, are trained using the standard Baum-
Welch algorithm (HTK tool for monophones) on the prediction
residual signals. It can be easily shown that this gives maximum-
likelihood (ML) parameter estimates for the likelihood function of
(5). However, in the integrated implementation, where the likeli-
hood function is in the form of (11), a new training technique is
required, which we have developed and are describing now.
For maximum-likelihood training of residual means, we set

dlog [T, p(o(k)|s)
Ot

=0,

where p(o(k)|s) is given by (11), and K denotes the total duration
of subsegment s in the training data. This gives the estimation
formula:

S [olk) = Flao(0)] = F' Lo (W)= (k) + F'[z0 (k)]0 (k) |

ﬂTS = K

13)
When the Taylor series expansion point is chosen to be the output
of model stage-I with the target mean as the FIR filter’s input, or

z0(k) = p=(k), (13) is simplified to:

214 [olk) = Flzo (k)]

[iry = 14
frs i (14)
Similarly, variance estimation can be established as

L {0 = o) = (F ()02 ()}

Oy, R . (15)

K

The above estimation formulas are applied iteratively since
new boundaries of subsegments are obtained after the new updated
parameters become available. The initial parameters used for the
iteration are obtained using HTK for training monophone HMMs
(with three left-to-right states for each phone).

6. EXPERIMENTS AND RESULTS

The phonetic recognition experiments which we have carried out
to evaluate the bi-directional, target-filtering HTM with both cas-
caded and integrated implementations are based on the widely used
TIMIT database. No language model is used in any HTM exper-
iment. We build the acoustic models based on HTMs using the
standard TIMIT label set, with slight expansion for diphthongs
and affricates, in training the residual means and variances. Pho-
netic recognition errors are tabulated using the 39 labels adopted
by many researchers to report recognition results. The results are
reported on the standard core test set with a total of 192 utterances
by 24 speakers.

We use the N-best rescoring paradigm to evaluate the HTM.
For each of the core test utterances, we use a standard triphone
HMM with a decision tree to generate a very large N-best list
where N=1000. The average number (over the 192 utterances) of
distinct phone sequences in this N=1000 list is 788, the remain-
ing being due to variations in the phone segmentation in the same
phone sequence.

2We have found in our empirical experiments that this simple way of
setting Taylor series expansion points is more effective than other more
elaborative ways.
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Types 101-Best 1001-Best 1000-Best
of the (with ref.) (with ref.) (no ref.)
HTM sent | phn | sent | phn | sent | phn

CascadedI | 26.6 | 78.8 | 16.2 | 76.4 | 0.0 | 71.8
Cascaded I | 52.6 | 86.8 | 33.1 | 81.0 | 0.0 | 71.7
Integrated I | 22.4 | 79.0 | 162 | 76.6 | 0.0 | 72.4
Integrated II | 83.3 | 95.6 | 78.1 | 943 | 0.5 | 73.0
CD-HMM 00 | 640 | 00 | 64.0 | 0.0 | 64.0

Table 1. Performance comparison of four types of HTM imple-
mentation (all with context independent parameters) and of tri-
phone HMM baseline (with context dependent parameters). Per-
formance is measured by percent sentence and phone recognition
accuracies (%) in the core test set defined in the TIMIT database.
See text for details of the four types of HTM implementations.
“Flat” language model is used. Acoustic features for all systems
are the same LPC cepstral vectors.

With the use of a flat phone language model and of the LPC
cepstra as features (the same conditions as the HTM), the phone
recognition accuracy for the HTK-implemented standard triphone
HMM in N-best list rescoring, with (N=1001) and without (N=1000)
adding reference hypotheses, is 64.04%. The sentence recogni-
tion accuracy is 0.0% for HMM, even with references included.
That is, the HMM system does not score the reference phone se-
quence higher than the N-best candidates for any of the 192 test
sentences. The HTM systems dramatically increase both phone
and sentence recognition accuracies, as shown in Table 6. We list
the HTM performances for two types of cascaded and integrated
implementations, respectively. First, the HTM with Cascaded-I
implementation uses (5) for likelihood scoring, with the residual
parameters (i, , 6?5) trained by HTK based on the residual fea-
tures computed as the difference between cepstral data and cep-
stral prediction. Second, Cascaded-II system uses (5) for scor-
ing also, but with the parameters /i, and &?S trained using (14)
and (15). Noticeable performance improvement is obtained after
the new training. Third, Integrated-I system uses (11) for scoring,
with the parameters /i, and &35 trained by HTK in the same way
as for the Cascaded-I implementation. Rather poor performance is
observed. Finally, Integrated-II system uses (11) for scoring, with
the parameters fi,, and 6%5 trained using (14) and (15). The best
performance, both in sentence and phone recognition accuracies,
is achieved. The improvement is the greatest when references are
added into the N-best list.

7. SUMMARY AND DISCUSSION

The work described in this paper represents our recent effort and
continuing research on structured generative modeling approaches
to speech recognition. We present a new statistical HTM, improv-
ing upon an earlier version of the HTM by extending the coartic-
ulation modeling from uni-directionality to bi-directionality. Two
types of model implementation are presented and compared: cas-
caded vs. integrated ones. The latter integrates over the statisti-
cal distribution of VTR in model construction and in computing
acoustic likelihoods, and with rigorous training, produces the best
recognition results in a standard TIMIT phonetic recognition task.

The recognition results presented in this paper are from a large-
scale N-best rescoring experiment where N=1000. Since the or-

acle phone accuracy of the entire 1000-best list is only 82.4%
(and oracle sentence accuracy only 3%), the long-span coarticu-
latory HTM is negatively affected by a large number of incorrect
phone hypotheses in the N-best list for virtually all test utterances.
Although such an “error-propagation” effect does not hurt short-
span context-dependent HMM nearly as much as it hurts long-
span models such as our HTM, the results of Sec. 6 nevertheless
show a much lower error rate for the HTM than for the HMM in
the rigorous N-best rescoring experiment (see last column in Ta-
ble 1). When the “error-propagation” effect is artificially removed
by adding references into the N-best lists, further drastic error re-
duction is obtained. This illustrates that the desired behavior in
the HTM design — for the model to accurately account for de-
tailed acoustic dynamics (given the correct phone and the corre-
sponding VTR target sequence) — has indeed be established in
the integrated implementation. In order to achieve analogous dra-
matic performance gain with no reference information available, it
would be necessary to carry out lattice rescoring using large, virtu-
ally error-free lattices, or to develop full decoders with highly con-
servative pruning strategies. We are currently pursuing the HTM
research in this promising direction.
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