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ABSTRACT

In this paper we present a comparison of the recently proposed

Soft-Feature Distributed Speech Recognition (SFDSR) with the

two evaluated candidate codecs for Speech Enabled Services

over wireless networks: Adaptive Multirate Codec (AMR) and
the ETSI Extended Advanced Front-End for Distributed Speech

Recognition (XAFE). It is shown that SFDSR achieves the best

recognition performance on a simulated GSM transmission, fol-

lowed by XAFE and AMR. We also present some new results con-
cerning SFDSR which demonstrate the versatility of the approach.

Further, a simple method is introduced which considerably reduces

the computational effort.

1. INTRODUCTION

Speech Enabled Services (SES) over wireless networks have

gained considerable interest due to the potentially high commer-

cial impact of offering such services to the huge number of mobile

phone subscribers [1]. Basically two options for the speech codecs
have been considered:

• AMR and AMR-WB, which are the existing voice codecs

for 3GPP.

• ETSI DSR Extended Front-End standards ES 202 211

(XFE) and ES 202 212 (XAFE).

Recently, the SA4 codecs group within 3GPP has commissioned a

comparison of the two codecs for use over a packet data channel.

The study, carried out by IBM and SpeechWorks (now Scansoft)
revealed a performance advantage of the DSR scheme [1].

AMR, on the other hand, was shown to exhibit very good

recognition accuracy for a wide range of carrier-to-interference

ratios (C/I) for transmission over a GSM circuit-switched voice
channel [2]. This is probably due to the close interaction of source

and channel coding, which is currently not considered in the DSR

standard. The source bit rate of AMR is chosen in the range of

4.75 up to 12.2 kb/s according to the quality of the transmission

channel, and the source bits are categorized in classes with dif-
ferent error protection capability assigned to the classes according

to their relevance for decoding. The received bitstream is decoded

into the speech signal at the server side, followed by feature extrac-

tion and speech recognition. This approach is known as Network
Speech Recognition (NSR).

Similar ideas about joint source-channel coding have also been

proposed for DSR. Weerackody et al. [3] proposed unequal error

protection and a soft-feature error concealment strategy. Bernard

and Alwan devised a coding scheme which allows error detection

capabilities with soft-decision decoding, and the Viterbi decoder

in the recognizer was modified to deal with unreliable features [4].
Peinado et al. [5] applied the concept of softbit speech decod-

ing introduced by Fingscheidt and Vary [6] for DSR and achieved

good recognition performance for AWGN and bursty channels.

In their work, they assumed the bit reliability information to be
known, e.g. from a given or assumed SNR-value. In [7] we built

upon the same concept, however, we employed the bit reliabil-

ity information as it is computed in the channel decoder. Speech

recognition experiments over a simulated GSM link revealed ex-
cellent performance down to very low C/I values.

Inspired by these promising results we further explored our

concept of SFDSR and present in the following results on the use-

fulness of intra-frame subvector correlations, database indepen-
dence of the a priori information, and on some complexity issues.

Given these new developments in distributed speech recog-

nition it is interesting to compare SFDSR with the ETSI DSR
scheme and with AMR-based Network Speech Recognition

(AMR-NSR). We conducted this comparison by simulating a com-

plete GSM link, including channel (de)coding, (de)interleaving,

GMSK (de)modulation and employing realistic channel models
including multipath propagation, fast fading, and cochannel inter-

ference. Note that a comparison on the basis of error patterns, as is

often done [5], may be inappropriate since it is unable to simulate

certain joint source-channel coding concepts.

2. SOFT-FEATURE DISTRIBUTED SPEECH
RECOGNITION

2.1. Concept

In this section we briefly review our Soft-Feature DSR (SFDSR)

concept as illustrated in Fig. 1. For a detailed description the

reader is referred to [7].

The ETSI DSR Advanced Front-End delivers features which

are encoded with a split vector quantization scheme: Two feature

vector components (either ci and ci+1, i = 1, 3, . . . , 11, or c0 and

log E) are grouped into a feature-pair subvector, and each sub-

vector x
SVk
n is quantized into a bit pattern b

SVk
n of size M(SVk)

using its own codebook. Here, n is the frame index. The super-

script SVk shall denote the k-th subvector, k = 1, . . . , 7, and it is

sometimes omitted in the following for notational convenience.

The transmission of the bit combination is described by an

equivalent channel model with input bn and output b̂n, which may
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comprise the channel model itself, the channel encoder/decoder,

modulation/demodulation and equalization. For soft feature

speech recognition, a channel decoder is required which outputs

the detected bit sequence b̂n, and in addition reliability informa-
tion in terms of estimated bit error probabilities: pen

. We em-

ployed the MAP-decoder after Bahl et al. [8]. Using these, the

transition probabilities P (b̂n|bn) from the transmitted bit pattern

bn to the known received bit pattern b̂n are computed. Obviously

a simulation based on a description of the channel effects by er-
ror patterns is inappropriate since the bit reliability information is

missing.

The next knowledge source to be exploited is the residual re-
dundancy in the bit stream of the source coder. Here, we used

first-order a priori knowledge P (bn|bn−1), which captures the

correlation between successive frames.

The a posteriori probabilities P (bn|b̂n, B̂n−1) are computed
from the transition probabilities and the a priori probabilities,

and finally they are used to compute various parameter esti-

mates. Here, B̂n−1 is a short-hand notation for the history

b̂n−1, b̂n−2, . . .. While for speech reconstruction one is only in-
terested in the MMSE estimates µx̂n

[6], i.e. the first-order mo-

ment of the a posteriori probability mass function, the second-

order moment σ2
x̂n

carries additional important information which

we employ for uncertainty decoding [10]. It is a measure of the

confidence about the reconstructed features.

The proposed SFDSR has the following useful properties:

• It is compatible with the ETSI DSR standards: the modifi-

cations pertain only to the processing at the server side.

• The soft-feature computation is done on a subvector level.

Error mitigation on a subvector-basis, as proposed in [12],

is an inherent property of our approach.

• The C/I or SNR values of the channel need not be known
and constant as in [5]. The channel decoder delivers the

time-variant bit reliability information as a side effect of

the decoding.

• Uncertainty decoding does not employ any tuneable param-
eter as in [4], the time-variant uncertainty information is

directly computed from the a posteriori probabilities.

• The decoding does not introduce a latency as the ETSI er-

ror mitigation scheme does in the case of successive frame-
pairs being affected by an error burst.

On the other hand, potential drawbacks of the system are:

• Correlation among the subvectors are ignored.

• The a prori probabilities have to be estimated in advance

on a training database. This might introduce an unwanted

database dependency of the achievable performance.

• The system is more computationaly demanding. In partic-

ular, a channel decoder has to be used that provides “soft-
outputs” and the estimation of µx̂n

and σ2
x̂n

has a high com-

putational load.

These issues are addressed in the next subsections.

2.2. Intra-Frame Subvector Correlation

Computing the a priori knowledge on a subvector level, as is done

in [7], is much less complex than considering the feature vector

as a whole, but potentially suboptimal since correlations among

Feature
Extraction

(Vector)
Quant.

Bit
Mapping

Equiv.
Channel

Transition
Prob.

a posteriori
Prob.

Moment
Comput.

Speech
Recogn.

a priori Prob.

xn x̄n bn

b̂n

pen

P (b̂n|bn)

P (bn|b̂n, B̂n−1)

µx̂n

σ2
x̂n

Fig. 1. Block diagram of Soft-Feature Distributed Speech Recog-
nition system.

subvectors inside a frame are ignored. To check the validity of

this approximation, we estimated the average mutual information

H(b
SVk
n )−H(b

SVk
n |b

SVl
n ) between subvectors SVk and SVl. Ta-

ble 1 shows the mutual information for the parameters of the ETSI

DSR Advanced Front-End, measured on the clean training data set

of Aurora 2 [11]. The correlation between any two subvectors of

cepstral coefficients is small, due to the properties of cosine trans-
form, whereas the (c0, logE) exhibits some correlation with other

subvectors, as energy is a global measure over all cepstral coeffi-

cients. Since taking into account this mutual information would

increase very much the memory requirements and computational

burden, we have decided not to use it.

2.3. Portability of a priori Information

We also checked whether the a priori information depends on the

audio-database on which it was estimated. We computed the a pri-
ori probabilities on the Wallstreet Journal database and we used

them in a SFDSR simulation involving an Aurora 2 speech recog-

nition task. Virtually no effect on the final word accuracy of the

recognizer was noticed, compared with the case when the a priori
information was estimated on Aurora 2. This demonstrates that at

least for a given language, english in our case, the table of a pri-

ori probabilities can be computed once and for all and need not be

adapted to new applications.

2.4. Complexity Reduction

In the case of first-order a priori knowledge the probability mass

functions P (b
SVk
n |b

SVk

n−1), k = 1, . . . , 7 are employed to compute

the MMSE estimates of the parameters, and, in case of uncertainty
decoding, also to compute the variance to be used in the recog-

nizer.

The table P (bSVk
n |bSVk

n−1) consists of 2M(SVk) ×2M(SVk) en-

tries. This amounts to a total of 5·212+210+216 = 87, 040 values

for the seven subvectors SV1 to SV7. A closer look at the table,

however, reveals that about 50% of the entries are zero. It is there-
fore advantageous to store only the nonzero values in a linked list,

avoiding unnecessary multiplications with zero in the MMSE pa-

rameter estimation. Due to the quadratic dependence of the num-

ber of multiplication on the number of nonzero terms, this simple
modification reduces the computational effort of the parameter es-

timation by a factor of four.

Note that a zero value of P (bSVk
n |bSVk

n−1) indicates that the bit

pattern b
SVk
n can never follow b

SVk

n−1. This information could be

used as a more elaborate consistency check compared to the one
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Table 1. Entropies H(bSVk
n ) and mutual informations I(bSVk

n ;bSVl
n ) = H(bSVk

n ) − H(bSVk
n |bSVl

n ) among the subvectors of the ETSI
advanced DSR front-end.

Subvector SVk SV1 = SV2 = SV3 = SV4 = SV5 = SV6 = SV7 =
c1, c2 c3, c4 c5, c6 c7, c8 c9, c10 c11, c12 c0, log E

M(SVk) 6 6 6 6 6 5 8

H(bSVk
n ) 5.84 5.80 5.80 5.77 5.82 4.80 7.72

I(b
SVk
n ;bSV1

n ) - 0.32 0.17 0.16 0.11 0.06 1.28

I(bSVk
n ;bSV2

n ) 0.32 - 0.12 0.08 0.06 0.07 0.40

I(bSVk
n ;bSV3

n ) 0.17 0.l2 - 0.04 0.04 0.05 0.23

I(bSVk
n ;bSV4

n ) 0.16 0.08 0.04 - 0.07 0.04 0.18

I(b
SVk
n ;bSV5

n ) 0.11 0.06 0.04 0.07 - 0.06 0.14

I(b
SVk
n ;bSV6

n ) 0.06 0.07 0.05 0.04 0.06 - 0.11

I(bSVk
n ;bSV7

n ) 1.28 0.40 0.23 0.18 0.14 0.11 -

described in the ETSI DSR standard. Using the thresholds defined

in [14] to prune those entries which do not pass the consistency
test, reduced the number of useful entries to 20% , however the

recognition accuracy was significantly decreased.

Concerning the use of the complex Bahl channel decoder, it

can be stated that a “soft-output” decoder is required anyway if
turbo codes have to be used as is the case in UMTS data trans-

mission. Further, the less complex soft-output Viterbi algorithm

(SOVA) can do as well [9].

3. COMPARISON OF CODEC OPTIONS

3.1. Experimental Setup

In the following we present experimental results on a compari-

son of three approaches: AMR-NSR, ETSI DSR and Soft-Feature
DSR:

• Network-based speech recognition employing the AMR
speech codec at source data rates of 4.75, 5.9, 7.4 and

10.2 kb/s. The corresponding channel coding was applied

as described in the specifications [15] and the signal was

transmitted over a voice channel. At the server side the

speech signal was reconstructed, features according to the
advanced front-end feature extraction algorithm were com-

puted and fed into the recognizer. This approach is called

“AMRx” in the following, where “x” denotes the chosen

source bit rate.

• DSR according to XAFE. The 5.6 kb/s source bitstream was

transmitted via a GSM data channel (TCH/F4.8 [15]) which

uses convolutional coding with a rate r = 1/3.

• Soft-Feature DSR as described in [7] (SFDSR). The 4.8
kb/s source bit stream was transmitted over the same chan-

nel as in the DSR-XAFE case. At the server side, MMSE

estimates of the features and uncertainty information were

computed and both fed to the recognizer for uncertainty de-
coding.

In all three scenarios the gross bit rate was 22.8 kb/s, corre-

sponding to a GSM full rate traffic channel.
We employed the GSM library of the SPW (“Signal Process-

ing Worksystem”) software suite to simulate the physical layer of

the GSM link. The simulation of the GSM transmission consisted

of the following elements

• Interleaving at the transmitter and deinterleaving at the re-

ceiver side

• Channel model approximating the COST 207 profile: a

“typical urban” channel, modelled by 12 propagation paths

(delay spread 1.03 µs) and Rayleigh fading. The mobile
terminal was assumed to be moving at 50 km/h. Fur-

ther, cochannel interference was simulated at various C/I

(carrier-to-interference) ratios.

• Channel decoding with the Bahl algorithm which delivers

bit reliability information required for MMSE parameter es-

timation.

In our simulations, however, we assumed perfect synchroniza-

tion of GSM system components and no link adaptation was in-
volved in the case of AMR.

3.2. Experimental Results

In the following we present results about speech recognition ex-

periments on the clean data set of AURORA 2 database.

Figure 2 shows the achieved word accuracy as function of C/I

ratio. SFDSR can be seen to clearly outperform the other ap-
proaches at low C/I values. As was expected, in the case of a noisy

channel, the lower the source coding rate the better the recogni-

tion performance of the AMR-based systems. This is due to the

more powerful channel codes that can be accommodated in the

data stream of fixed gross bit rate of 22.8kb/s.

Note that for low C/I values, AMR475 and AMR59 even out-
perform DSR. This fact cannot be seen in figure 3 where the word

accuracy is shown as a function of bit error rate (BER). Only the

presentation as a function of C/I, as is chosen in figure 2 reveals

the effect of the different channel coding schemes.

Comparing the two figures it can therefore be concluded that
DSR is superior to AMR given the same bit error rate. However,

the specified channel codes for the low bit rate AMR modes are

more powerful, resulting in a performance advantage over DSR at

low C/I values.

4. CONCLUSIONS

In this paper we compared Soft-Feature DSR with the two candi-

date codecs for Speech Enabled Services and showed that it was
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Fig. 2. Word accuracy vs C/I ratio.

superior to both of them. The comparison was made in terms of
achieved recognition word accuracy, assuming the transmission of

speech parameters over an error prone circuit-switched communi-

cation network.

For the same bit error rate it was shown that the ETSI DSR

scheme outperforms the AMR-based network speech recognition.

However, simulations of the GSM physical channel also revealed

that the specified channel codecs to be used with AMR may result
in improved recognition performance at low C/I, compared to the

ETSI DSR method.
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