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ABSTRACT
In distributed speech recognition, the speech features are com-

puted on a mobile device, compressed, and sent over a network

to a speech recognition server, where the Viterbi search and hid-

den Markov modeling takes place. In this work, we examine some

error concealment methods for distributed speech recognition over

burst error channels. We consider interpolation and interleaving,

and we present a novel use of the stochastic weighted Viterbi recog-

nition algorithm to increase robustness against interpolated fea-

tures. We examine interleaving at both the frame level and code-

book index level. Channel errors are simulated using a Gilbert

model, and the performance of our algorithm is compared with

other techniques, including the ETSI DSR standard, on a digits

task and a large vocabulary task. Coupled with interleaving and in-

terpolation, our algorithm can provide accuracy as high as 96.7%

on a digit recognition task during an average bit error probabil-

ity of 1
20
. On the more difficult WSJ task, the accuracy without

bit errors is 85.7%. Using our algorithm, we can achieve 82.9%

accuracy with an average bit error probability of 1
30
.

1. INTRODUCTION

The demand for tetherless access to data is driving the industry

toward smaller but more capable wireless devices. The applica-

tions include high-quality wireless web browsing, multimedia e-

mail and messaging services, digital music playback, as well as

personal data management applications, such as calendar and con-

tact databases. These pocket-sized devices have small screens and

tiny keypads, so appropriate use of speech recognition technology

can allow users to interact with the system in a natural manner.

However, these devices are limited in computation, memory, and

battery energy. Complex speech recognition tasks are difficult to

perform on the device due to these resource limitations. A typical

speech recognition system consists of a signal processing front-

end or feature extraction step, followed by a search across acoustic

and language models for the most likely sentence hypothesis. The

signal processing front-end is a small portion of the overall com-

putation and storage required. The acoustic and language models

typically use on the order of tens of megabytes each of storage

with significant computation required for large vocabulary search.

Therefore, distributing the speech recognition across the network

is an attractive alternative for these mobile wireless devices.

In distributed speech recognition (DSR), the speech features,

typically mel-frequency cepstral coefficients (MFCC), are calcu-

lated at the client and sent over the wireless network to a server.

Figure 1 shows a block diagram of this system. By only sending

the speech data required for machine recognition, we can obtain

better accuracy at lower bit rates than traditional human perception-

based speech coders. The back-end speech recognition search in-

cluding hidden Markov model (HMM) state output evaluation and

Viterbi search is performed at the server. In order to minimize the

bit rate, the MFCCs are first compressed using some quantization

scheme. The result is a three-step process on the mobile client

involving computation, quantization, and communication. The re-

sulting text from the speech recognition process can be sent back

to the mobile client or handled at the server depending on the na-

ture of the application.

The presence of bit errors in the quantized speech feature stream

can cause a significant decrease in accuracy. It is essential that

bit errors be detected and concealed when possible. A study of

frame erasure and errors with respect to accuracy was demon-

strated in [1], which emphasizes the need for effective error de-

tection, correction, or concealment techniques. In this work, we

attempt to alleviate the effects of bit errors on the DSR bitstream

through the use of interleaving, concealment through interpolation,

and a novel use of the stochastic weighted Viterbi algorithm.

In Section 2, we discuss some related work. We overview the

interpolation and interleaving methods briefly in Section 3, includ-

ing a characterization of the interpolation error. This interpolation

error is fed into a stochastic weighted Viterbi algorithm that is ex-

plained in Section 4. Recognition results are presented in Sec-

tion 5, followed by conclusions and observations in Section 6.

2. RELATEDWORK

In [2], the performance of DSR over IP networks is investigated.

Packet losses, containing a single frame of speech, are simulated

using random losses, a Gilbert-Elliot model, and a network bot-

tleneck simulation. Repetition based error concealment is shown

to be adequate for random isolated losses, but it breaks down un-

der lengthy burst-like packet loss. Interleaving is used in [3] to

distribute the speech features across multiple packets. This re-

duces the probability of the loss of a complete frame at the cost

of increased delay. Interleaving, coupled with linear interpolation,

minimized reductions in accuracy in moderate packet loss condi-

tions. In [4], an interpolation technique in the log-filterbank do-

main is shown to be more robust to consecutive frame losses since

log filterbank features exhibit a much higher temporal correlation.
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Fig. 1. A typical distributed speech recognition system.

In [1], errors were concealed by repetition, and the HMM output

probability was weighted exponentially by the square root of the

auto-correlation lag of the repeated feature. The result was that

longer bursts of repeated features counted less toward the Viterbi

search update. A stochastic version of the weighted Viterbi algo-

rithm was presented in [5] in the context of speaker verification

in noise. It is based on the expected value of the HMM output

probability for noisy speech vectors.

The ETSI DSR standard provides a framework for MFCC cal-

culation, quantization, framing and error protection for DSR ap-

plications [6]. We use the split vector quantization codebooks sup-

plied with the ETSI DSR system, which include 7 codebooks of

varying size. One potential problem with the ETSI DSR system is

the use of cyclic redundancy check (CRC) error detection bits on

consecutive frame pairs. It was shown in [7] that this use of error

protection coupled with repetition can cause a single feature vec-

tor to be used for many consecutive frames in the presence of bit

errors. We consider CRC protection bits applied only to individual

frames as presented in [7]. The burst error channel is simulated

using a two-state Gilbert-Elliot channel model at the bit level [8].

After CRC error detection, our algorithm sees bit errors as missing

frames in the MFCC feature stream.

3. INTERLEAVING AND INTERPOLATION

Interpolation is used to conceal errors in the output feature vec-

tors by filling the gap with data based on the good frames at either

side of the gap. A frame error is defined as a failure of the 4-

bit CRC in the received 48-bit frame. All codebook indices are

considered corrupted and concealment is required. In [4], it was

shown that interpolation in the log-filterbank domain works bet-

ter as there is little temporal correlation in the cepstrum. This re-

quires some zero-padding, followed by an inverse discrete cosine

transform (DCT), interpolation, and finally a DCT to return to the

cepstral domain. We performed cubic spline interpolation in the

log-filterbank domain. Cubic spline interpolation results in a bet-

ter representation of the missing data by requiring that the first and

second derivatives be smooth and continuous, respectively.

In the presence of burst-like errors, many consecutive frames

of speech can be corrupted. Interpolation techniques break down

over longer burst lengths and can produce significant errors in the

output. Interleaving is a common technique to reduce the chances

of consecutive missing frames of data. By scrambling the order of

the data frames, a burst-like error pattern will spread the loss across

non-consecutive frames, allowing interpolation to be performed

across a smaller gap. An M × N block interleaver rearranges
the order of data frames forMN total frames. The de-interleaving
operation is the inverse of the interleaver, and the input frames are

restored to their original order.
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Fig. 2. A 6 × 4 frame-based block interleaver. Input frames are
numbered sequentially.

In this work, we use a 6 × 4 frame-based interleaver and a
14×12 sub-frame interleaver, both of which preserve the 24-frame
block size in the ETSI standard. The frame-based interleaver is

shown in Figure 2. The input sequence consists of sequentially

numbered frames, each consisting of 7 codebook indices. The out-

put sequence is obtained by reading up each column. Each output

frame is protected by a 4-bit CRC.
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Fig. 3. The output of a 14× 12 sub-frame interleaver. Input frame
numbers are indicated by color, and each column represents a CRC

protected block consisting of 7 codebook indices from various in-

put frames.

In the sub-frame interleaver, the entire set of 168 codebook in-

dices from the 24 frames of speech are interleaved using a 14×12
interleaver shown in Figure 3. These dimensions are chosen to en-

sure that each sequential group of 7 codebook indices at the output

of the interleaver contains one value from each codebook. Each

set of 7 codebook indices is then protected with a 4-bit CRC. Both

interleavers have a delay of 24 frames, but each CRC protected

frame at the output of the sub-frame interleaver contains codebook

indices from 7 different speech frames. Therefore the loss of a

single frame is spread across multiple output frames. Interpolation

I - 314

➡ ➡



can still be performed in the log-filterbank domain, but it must be

performed for the cepstral coefficients associated with each code-

book separately and the results combined.

3.1. Modeling the Interpolation Error

In this section, we model the error due to interpolation of bad or

missing feature vectors. While the interpolation is reasonably ac-

curate for gaps of a few frames, it breaks down with longer burst

length. We consider various burst lengths in our analysis.

The interpolation error for a given feature can be modeled as

zero-mean white Gaussian noise. For a given feature, n, at time, t,
we have:

Ôt,n = Ot,n + vt,n (1)

where Ôt,n is the interpolated feature, Ot,n is the original speech

feature (unknown at the receiver), and vt,n is the white Gaussian

noise process. We calculate the sample mean and variance using

test data, where errors of known burst length are systematically

inserted and interpolation is performed. The result is a set of esti-

mates for the mean and variance of the interpolation error for each

feature at varying burst lengths. The mean was found to be very

close to zero for all features and for all burst lengths tested. Fig-

ure 4 shows the distribution of the interpolation error for the 11th

MFCC coefficient during a burst of length one.

4. WEIGHTED VITERBI ALGORITHM

Given a model of the additive noise for interpolated speech vectors,

we can pass this uncertainty information to the Gaussian mixture

density evaluation. The weighted Viterbi algorithm replaces the

output probability calculation with its expected value. In the nor-

mal HMM output probability computation with diagonal covari-

ance matrices, the output probability for HMM state k is calculated
as follows:

bk(Ot) =

M−1∑
m=0

Cm

N−1∏
n=1

1√
(2π)σ2

m,k,n

exp

[
−1

2

(Ot,n − µm,k,n)2

σ2
m,k,n

]
(2)
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Fig. 4. The distribution of the interpolation error for c(11) with a
burst length of one frame.

where M is the number of Gaussian mixture densities, N is the
number of features, and µm,k,n and Σm,k,n are the means and

covariance matrix for state k, mixture m, and feature n. The ex-
pected value of the interpolated feature vector can be written as [5]:

E[bk(Ôt)] =

M−1∑
m=0

Cm

N−1∏
n=1

1√
(2π)σ̂2

m,k,n

exp

[
−1

2

(E[Ôt,n] − µm,k,n)2

σ̂2
m,k,n

]
(3)

where σ̂2
m,k,n and E[Ôt,n] are the total variance and expected

value of the corrupted feature in HMM state k, Ôt,n. Under the as-

sumption of zero mean independent Gaussian noise, the variance,

σ̂2
m,k,n, is:

σ̂2
m,k,n = σ2

m,k,n + σ̃2
n,l (4)

where σ̃2
n,l is the interpolation error variance for feature n, at burst

position l that was found in Section 3.1. The value of E[Ôt,n] is:

E[Ôt,n] = E[Ot,n] + E[vt,n] = Ot,n (5)

since E[vt,n] = 0 and Ot,n is a constant for time instant t.
The algorithm works as follows. In the absence of any bit

errors, no interpolation is performed, and the interpolation error

variance, σ̃2
n,l, is set to zero. In this case, the output probability

is identical to (2). In the presence of bit errors, the burst length,

in frames, is determined by delaying until an un-errored frame is

received. Interpolation is performed, and the appropriate set of

variances, σ̃2
n,l, for the burst length and position within the burst

for each feature are passed to the Gaussian evaluation. For large

vocabulary tasks, we found that the adaptation worked best with a

scaling factor of 0.3 applied to the variance, σ̃2
n,l. When the vari-

ance of the interpolation error is high, the output probabilities of

all states and all mixtures tend toward zero, and the discrimina-
tive ability of the model is decreased (i.e. larger ranges of input

produce similar output probabilities.)

This differs from the algorithm presented in [1], where the

output probability was weighted exponentially:

bk(Ot) =

N∏
k=1

[b(Ok,t)]
γk,t (6)

The output probability of each individual feature, b(Ok,t), is weighted
according to the square root of the time-autocorrelation of the fea-

ture. Therfore γk,t =
√

ρk(t − tc), where ρk(t − tc) is the au-
tocorrelation of feature k at lag index tc. Secondary features were

weighted according to a binary value (0 or 1) based on the length

of the burst. We found that this weighting does not work well

with interpolation as it does not capture the statistics of the inter-

polation error. In addition, the output probabilities with the ex-

ponential weighting tend toward one with increasing error burst
length. When coupled with a language model and the associated

language model weight, the acoustic model is given more empha-

sis in the Viterbi update equations during error bursts. The stochas-

tic weighted Viterbi algorithm has the opposite effect, where the

acoustic model is given less weight in relation to the language

model during error bursts. This results in better performance for

large vocabulary speech recognition.
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5. RESULTS

We tested various error concealment schemes, including the weighted

Viterbi recognition, using the TIDIGITS and WSJ speech corpus

and the ISIP speech recognizer from Mississippi State. For the

digits task, word models were trained using 941 utterances whose

MFCC vectors were calculated using the ETSI DSR front-end.

The test set consisted of 336 digit utterances of varying length and

across different speakers. The WSJ journal system was trained on

1792 clean speech utterances and tested with 166 utterances and a

bigram language model with a 5,000 word vocabulary. The burst-

like error conditions were simulated using the two state Gilbert-

Elliot model. The bit error patterns for a particular speech utter-

ance were computed in advance and stored on disk. In this way,

each concealment method was tested against the same bit errors

for a given set of channel model parameters. We varied both the

mean burst length in bits, Tb, and the mean time between bursts,

Tg . We also show the average bit error rate (BER) for the burst

channel conditions. The probability of bit error in the good state

is fixed at 10−6, and the probability of bit error in the bad state is

fixed at 10−1. The following concealment scenarios were tested:

A The ETSI DSR standard with no modifications
B Expontentially weighted Viterbi recognition from [1] with a a

6 × 4 frame-based interleaver

C Stochatistic weighted Viterbi recognition with a 6 × 4 frame-
based interleaver

D Stochatistic weighted Viterbi recognition with a 14 × 12 sub-
frame interleaver

Each system adds an increasing amount of error concealment. The

bit rate of A is 4.8kbps, while the bit rate of B, C, and D is 5.0
kbps due to the single frame based CRC error detection.

The results are shown in Table 1. Word accuracy (including

substitutions, deletions, and insertions) is reported. The baseline

accuracy without bit errors is 99.5% for the digits task and 85.7%

for the WSJ task. From the table, we can see that the ETSI system

(column A) does not provide adequate performance in the more
severe error conditions that we have simulated. Accuracy quickly

drops below 90% in the digits task and barely reaches 50% in the

WSJ task. Interleaving offers the biggest improvement in accu-

racy. Stochastic weighted Viterbi recognition (column C) is able
to outperform the exponential version (column B) in all channel
conditions tested. The improvement in the WSJ task is more pro-

nounced due to the interaction between language model probabili-

ties and acoustic model probabilities with the respective weighting

techniques. Finally, the addition of sub-frame interleaving (col-

umn D) offers additional improvement under certain channel con-
ditions. The risk with sub-frame interleaving is that a single bit

error can be spread across 7 frames of speech, while frame-based

interleaving isolates the error to a single frame. This may explain

why sub-frame interleaving performs slightly worse in some con-

ditions and better in others.

6. CONCLUSION

In this paper, we investigated the effects of several well-known

error concealment algorithms for DSR traffic over a burst error

channel. We also presented a novel use of the stochastic weighted

Viterbi algorithm and sub-frame interleaving to increase robust-

ness in the presence of bit errors. This algorithm can provide ac-

curacy as high as 96.7% in burst error conditions with an average

Table 1. Results of DSR simulations for TIDIGITS and WSJ
Tasks.

TIDIGITS Task

Tg/Tb Avg. BER A B C D

500/200 2.86 × 10−2 91.00 98.90 99.20 98.90

200/100 3.33 × 10−2 89.70 98.40 98.80 98.60

200/200 5.00 × 10−2 72.50 95.90 96.80 97.60

500/500 5.00 × 10−2 71.00 94.20 94.60 95.20

WSJ Task

Tg/Tb Avg. BER A B C D

500/200 2.86 × 10−2 50.50 81.20 82.70 82.90

200/100 3.33 × 10−2 41.10 78.90 82.20 82.90

200/200 5.00 × 10−2 16.80 68.00 70.30 73.00

500/500 5.00 × 10−2 18.20 66.50 68.10 68.00

BER of 1
20
on a digit recognition task. In a more difficult WSJ

task, an accuracy of almost 83% can be maintained with an aver-

age BER of 1
30
. These algorithms are able to outperform both the

ETSI standard [6] and the exponential weighted Viterbi recogni-

tion technique presented in [1].
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