
OPTIMAL SUBSET SELECTION FROM TEXT DATABASES

Jilei Tian, Jani Nurminen and Imre Kiss

Multimedia Technologies Laboratory

Nokia Research Center, Tampere, Finland
{jilei.tian, jani.k.nurminen, imre.kiss}@nokia.com

ABSTRACT

Speech and language processing techniques, such as automatic

speech recognition (ASR), text-to-speech (TTS) synthesis,

language understanding and translation, will play a key role in

tomorrow’s user interfaces. Many of these techniques employ

models that must be trained using text data. In this paper, we

introduce a novel method for training set selection from text

databases. The quality of the training subset is ensured using

an objective function that effectively describes the coverage

achieved with the strings in the subset. The validity of the

subset selection technique is verified in an automatic

syllabification task. The results clearly indicate that the

proposed systematic selection approach maximizes the quality

of the training set, which in turn improves the quality of the

trained model. The presented idea can be used in a wide

variety of language processing applications that require

training with text databases.

1 INTRODUCTION

Most automatic speech recognition (ASR) and text-to-speech

(TTS) systems contain models that have to be trained with text

data. Typical examples can be found from many parts of the

systems. In pronunciation modeling, some data-driven

approach, such as neural network based methods or decision

tree based methods [6], are often applied, especially for

languages like English. These statistical models are trained

using a pronunciation dictionary containing grapheme-to-

phoneme entries. In text-based language identification [8], the

model is trained using a multilingual text corpus that consists

of word entries from the target languages. In the data-driven

syllabification task [7], the model is trained using text-based

pronunciations and the corresponding syllable structures.

In all data-driven approaches, the selection of a suitable

training set can be regarded as a very important step in the

training process. In general, the performance of any trained

model depends quite strongly on the quality of the text data

used in the training. With text-based data, the importance of

the training set selection is very pronounced since the

generation of the training data entries is often very time and

resource consuming and requires language-specific skills. In

this paper, we show that systematic training set selection

results in enhanced model performance and/or offers the

possibility to use a smaller training set size. In practice, the

reduced training set size brings two significant additional

benefits. First, the amount of manual annotation work is

reduced, which in turn decreases the probability of errors and

inconsistencies in the annotations. Second, the memory

consumption and the computational load caused by the

training process are lowered. In some cases this advantage

propagates to the trained model as well; the size of a decision

tree model, for example, depends on the size of the training

set.

Despite the evident importance of the training set

selection, this step is often neglected in practice. Usually, the

training set is obtained by collecting a set of random entries

from a larger text database or by decimating a sorted corpus.

The drawback of these solutions is that the amount of

meaningful information in the selected text data set is not

maximized. The random selection method is rather coarse and

does not produce consistent results. The method of decimating

a sorted data corpus, on the other hand, only uses a limited

number of the initial characters of the strings and thus does

not guarantee good performance.

In this paper, we present a method that can quasi-

optimally select a subset from a text database in such a

manner that the text coverage is maximized. To achieve this,

we define an objective function that is optimized in the subset

selection. The objective function measures the “subset

distance” using the generalized Levenshtein distances

between the text strings. This paper also introduces an

algorithm for optimizing the objective function. For practical

applications with large databases, the algorithm can be

modified in order to speed up the processing or to lower the

memory consumption, but the main idea and the objective

function will remain useful in all cases. To demonstrate the

usefulness of the proposed approach, we evaluate it in the

syllabification task.

The text subset selection method introduced in this paper

can be used in a wide variety of different applications. One

good example is the language identification task [8], in which

the proposed approach makes it possible to easily balance the

number of training set entries from each target language while

at the same time giving a good coverage for every target

language. In addition to the training set selection task

discussed extensively in this paper, it is possible to employ

the same techniques for clustering a text database. Moreover,

when used together with a meaningful distance measure, such

as the generalized Levenshtein distance, the proposed

approach enables the use of vector quantization techniques on

text data.

The remainder of the paper is organized as follows. We

first describe the generalized Levenshtein distance and

introduce the basic principles of the text database selection

algorithm in Section 2. In Section 3, we describe the

syllabification task used as the practical example by briefly

reviewing the syllable structure grammar and the neural

network based syllabification method. The performance of the

proposed subset selection approach is evaluated in the

I - 3050-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

syllabification task in Section 4. Finally, some concluding

remarks are presented in Section 5.

2 SELECTION ALGORITHM

In order to be able to select a subset from a text database in a

systematic and meaningful manner, an objective function

measuring the quality of the subset must be defined. The

objective function should somehow measure the similarity or

the dissimilarity of the entries. In the proposed approach, we

base the objective function on the generalized Levenshtein

distance. In this section, we first describe the basic properties

of this distance measure and then continue by defining an

objective function measuring the average distance within a

subset and by introducing an algorithm for selecting subsets of

different sizes in a quasi-optimal manner.

2.1 Generalized Levenshtein distance

The generalized Levenshtein distance (GLD) is defined as the

minimum cost of transforming one string into another by

means of a sequence of basic transformations: insertion,

deletion and substitution [4]. The transformation cost is

determined by the costs assigned to each basic transformation.

Let x and y be strings of length m and n, respectively,

whose symbols belong to a finite alphabet of size s. Let xi be

the ith symbol of string x, with 1 i m, and x(i) be the prefix

of the string x of length i, i.e. the substring containing the first

i symbols of x. In addition, let d(i,j) be the distance between

x(i) and y(j), and ε be an empty string. Furthermore, we

denote by w(a,b), w(a,ε) and w(ε,b) the cost of substituting the

symbol a with the symbol b, the cost of deleting a and the

cost of inserting b, respectively. The distance d(m,n) is

recursively computed based on the definitions of d(0,0), d(i,0)

and d(0,j) (i = 1…m, j = 1…n), representing the initial

distance, the cost of deleting the prefix x(i) and the cost of

inserting the prefix y(j), respectively, as follows:

njywjdjd

mixwidid

d

j

i

...,1),()1,0(),0(

...,1),()0,1()0,(

0)0,0(

=∀+−=
=∀+−=

=

ε
ε (1)

+−−

+−
+−

=

),()1,1(

),()1,(

),(),1(

min),(

ji

j

i

yxwjid

ywjid

xwjid

jid ε
ε

 (2)

The original Levenshtein distance is characterized by the

following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is

equal to b and 1 otherwise. Its generalized version assumes

that different costs can be associated to transformations

involving different symbols. In the case of an alphabet of s

symbols, this requires a table of size (s+1) times (s+1), called

the cost table, to store all the substitution, insertion and

deletion costs. It can be shown that the defined distance is a

metric if the cost table is symmetric.

2.2 Objective function and selection algorithm

In our approach, we measure the quality of a text subset using

an objective function based on the generalized Levenshtein

distance. As described in Section 2.1, the Levenshtein distance

can be used for measuring the distance between any pair of

entries. Similarly, the distance for the whole text data set can

be calculated by averaging the distances of all the string pairs

in the set. Suppose that there are m entries in the database and

the ith entry is denoted by e(i). With these definitions, we can

compute the overall “subset distance” D as:

)1(

))(),((2
1

−⋅

⋅
= = >

mm

jeield

D

m

i

m

ij
, (3)

where ld(e(i), e(j)) is the GLD between the ith and jth entries.

Based on the above objective function, it is possible to

design an algorithm that selects a subset from a text database

in such a manner that the distance D is maximized. The

following algorithm recursively constructs the subset by

always selecting the new entry that maximizes the distance to

the other selected entries.

1. Calculate the Levenshtein distances for all the pairs;

ld(e(i), e(j));

2. Initially select the pair that has the largest distance among

all pairs in the database,

{ }))(),(())2(_),1(_((argmax
),1(

jeieldesubsetesubset
ijmi >≤≤

= . (4)

3. Assuming that the selected subset has k entries (in the

first time k = 2), the target now is to find the k+1-th entry

to the subset. The selection that approximately maximizes

the amount of new information brought into the subset

can be done using the following formula.

=
≠=≤≤

k

jesubsetiejmi

jesubsetieldp
)(_)(,1)1(

)(_),((argmax . (5)

The selected entry p is added into the subset as

subset_e(k+1).

4. Repeat step 3 until the preset subset size is reached.

3 EXAMPLE APPLICATION:

SYLLABIFICATION TASK

The development of speech synthesizers and speech

recognizers often requires working with sub-word units such

as syllables [5]. We have earlier described a neural network

based approach for the automatic assignment of syllable

boundaries in [7]. In this paper, we revisit the topic and use

this syllabification task for verifying the usefulness of the

proposed subset selection approach. The first part of this

section gives some basic information on the task and the

second part discusses the neural network approach. The

practical results achieved in this task are presented in

Section 4.

3.1 Syllable structure

A syllable is a basic unit of word studied on both the phonetic

and phonological levels of analysis [2]. The syllable

information can be described using grammars [3]. The

simplest grammar is the phoneme grammar, where a syllable is

tagged with the corresponding phoneme sequence. The

consonant-vowel grammar describes a syllable as a consonant-

vowel-consonant (CVC) sequence. The syllable structure

grammar, on the other hand, divides a syllable into onset,

nucleus and coda (ONC) as shown in Figure 1. The nucleus is

an obligatory part that can be either a vowel or a diphthong.

The onset is the first part of a syllable consisting of consonants

and ending at the nucleus of the syllable, e.g. in the syllable

[t eh k s t], /t/ is the onset and the vowel part /eh/ is the

nucleus. The part of a syllable that follows the nucleus forms

the coda. The coda is constructed of consonants, e.g. /k s t/ in

I - 306

➡ ➡

our example syllable. The nucleus and coda are combined to

form the rhyme of a syllable. A syllable has a rhyme, even if it

doesn't have a coda.

In the syllable structure grammar, the consonants are

assigned as onset or coda. The ONC representation used in the

syllable structure grammar contains more information than the

CVC structure for multi-syllable words. The syllable structure

grammar was used in [7] and it is also used in this paper.

In the automatic syllabification task, the phoneme

sequences are mapped into their ONC representations. The

data-driven syllabification model is trained on the mapping

information. In the decoding phase, given a phoneme

sequence, the ONC sequence is first generated, and then the

syllable boundaries are uniquely decided on the ONC

sequence. For invalid ONC sequences, a self-correction

algorithm [7] can be applied to solve the problem by utilizing

certain common linguistic rules. The whole syllabification task

can be summarized as follows:

1. Each pronunciation phoneme string in the training set is

mapped into the corresponding ONC string, for example:

(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C

2. The model is trained on the data in the format of

“pronunciation -> ONC”

3. Given a pronunciation string, the corresponding ONC

sequence is generated using the model. Then, the syllable

boundaries are placed at the location starting with symbol “O”,

or with “N” if it is not preceded with symbol “O”.

Figure 1. Diagram of the syllable structure grammar.

3.2 Neural network based syllabification approach

The basic neural network based ONC model presented in [7] is

a standard multi-layer perceptron (MLP) shown in Figure 2.

The input phonemes are presented to the MLP network in a

sequential manner. The network gives estimates of ONC

posterior probabilities for each presented phoneme. In order to

take the phoneme context into account, a number of phonemes

on each side of the phoneme in question are also used as inputs

to the network. Thus, a window of phonemes is presented to

the neural network as input. Figure 2 shows a typical MLP

with a context size of w phonemes, phi-w…phi+w centered at

phoneme phi. The centermost phoneme phi is the phoneme that

corresponds to the output of the network. Therefore, the output

of the MLP is the estimated ONC probability

P(onck|phi−w,…,phi+w) ({ }CNOonck ,,∈) for the centermost

phoneme phi in the given context pi-w…pi+w. A phonemic null

is defined in the phoneme set and is used for representing

phonemes to the left of the first phoneme and to the right of

the last phoneme in a pronunciation.

The ONC neural network is a fully connected MLP,

which uses a hyperbolic tangent sigmoid shaped function in

the hidden layer and a softmax normalization function in the

output layer. The softmax normalization ensures that the

network outputs are in the range [0,1] and sum up to unity,

=

=
3

1j

y

y

i
j

i

e

e
P . (6)

In Equation (6), yi and Pi denote the ith output value

before and after softmax normalization. It has been shown in

[1] that a neural network with softmax normalization will

approximate class posterior probabilities when trained for

one-out-of-N classification and when the network is

sufficiently complex and trained to a global minimum. Since

the neural network input units are text-valued, the phonemes

in the input window need to be transformed to some numeric

quantity. This can be done, for example, using an orthogonal

codebook representing the alphabet used for the ONC

mapping task, as shown in Table 1. The last row in the table is

the code for the phonemic null. An important property of the

orthogonal coding scheme is that it does not introduce any

correlation between the different letters.

o u t p u t l a y e r

h i d d e n l a y e r

i n p u t l a y e r

P (o n c
1
| p h

i - w
, . . . , p h

i+ w
) P (o n c

3
| p h

i - w
, . . . , p h

i+ w
)

c o d e v e c t o r s o f i n p u t l e t t e r s

p h
i - w

p h
i

p h
i+ w

Figure 2. Two-layer neural network architecture.

The ONC neural network is trained using the standard

back-propagation (BP) algorithm augmented by a momentum

term. Each phoneme with context and the corresponding ONC

tag of the pronunciation make up one training example.

Weights are updated in a stochastic on-line fashion. All

parameters are rounded off to eight bits as this was found

sufficient for representing model parameters.

Table 1. Orthogonal phoneme coding scheme.

Letter Code

aa 100...0000

ae 010...0000

... ...

B 000...1000

P 000...0100

T 000...0010

000...0001

The outputs of the ONC neural network approximate the

ONC posterior probabilities corresponding to the centermost

phoneme. The ONC sequence of a pronunciation is obtained

by combining the network outputs for each individual

phoneme in the pronunciation. Given a pronunciation with its

 [Syllable]

NucleusOnset Coda

 /t/ /eh/ /k/ /s/ /t/

Word:

text

I - 307

➡ ➡

phonemic representation, the ONC tag of phoneme phi is

given by

{ }),...,|(argmax wiwik
onc

phphoncPonc

k

+−= , (7)

where),...,|(wiwik phphoncP +− is the network output

corresponding to onck given the input phonemes phi-w…phi+w,

and variable w denotes the phoneme window context size,

respectively. The variable onc takes its values from the set

[O N C].

4 EXPERIMENTAL RESULTS

The neural network based syllabification method is evaluated

using the CMU dictionary for US English. The dictionary

contains 10,801 words with their pronunciations and labels

with ONC information. The pronunciations and the mapped

ONC sequences are extracted to form the training data. The

training set is selected from the whole database by using the

following methods:

• Decimation of the sorted dictionary (denoted as

DECIMATE);

• Subset selection from the text database using the selection

approach proposed in this paper (denoted as SELECT).

With both methods, the data not selected to the training set

constitutes the test set.

100 150 200 250 300 350 400 450 500 550
88

90

92

94

96

98

100

SELECT

DECIMATE

Performance comparison between two data selection methods

Size of training set

Ac
cu

rac
y o

f te
st

se
t

Figure 3. ONC accuracy on test set with different training set

sizes using the two data selection methods.

Figure 3 shows the experimental results achieved using

the two data selection methods. The efficiency of the training

set selection approach can be studied by evaluating the

generalization capability. The general rule of thumb is that the

more training data is available, the better performance can be

expected. However, the selection of the training data affects

the generalization capability: if the training data is well

selected, the performance can be improved without increasing

the size of the training set. The results clearly show that the

proposed subset selection technique outperforms the

commonly used decimation method; the average improvement

achieved using the proposed approach is 38.8%.

Figure 4 illustrates the “subset distance” (see Section 2.2)

of datasets extracted using the two different data selection

methods: the decimation technique and the proposed selection

algorithm. It is easy to see that the average distance D is more

or less even when the decimation method is used. With the

proposed method, the average distance decreases

monotonically with increasing data size. Furthermore, the

difference between the two methods is large with small subset

sizes, and converges to zero when the whole data set is used.

Thus, these results indicate that the proposed method can

extract data more efficiently, i.e. the selected data has better

coverage. Naturally, this explains the better generalization

capability of the trained model.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
6.5

7

7.5

8

8.5

9

9.5

10
Average distance of data extracted by two data selection methods

Percentage of selected sebset size vs. whole dataset size

Av
er

ag
e

dis
ta

nc
e

of
 su

bs
et

SELECT

DECIMATE

Figure 4. Average distance D inside the subsets extracted

using the two different data selection methods, with respect to

the percentage of the subset size vs. the whole data size.

5 CONCLUSIONS

Training data selection from a text database is a crucial, but

often neglected, step in the development of ASR and TTS

systems. In this paper, we define an objective function that

effectively measures the quality of a selected subset.

Moreover, we introduce a subset selection algorithm that

optimizes the objective function. Our experimental results

obtained in the syllabification task show that the proposed

approach is a very promising technique that makes it possible

to select subsets with good coverage in a systematic and

meaningful way. The presented idea can be used in many

different applications that require training with a text database.

6 REFERENCES

[1] C. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.

[2] D. Kahn, Syllable-Based Generalizations in English

Phonology, Doctoral Dissertation, Massachusetts Institute

of Technology, USA, 1976.

[3] K. Müller, “Automatic Detection of Syllable Boundaries

Combining the Advantages of Treebank and Bracketed

Corpora Training”, in Proceedings of the 39th Annual

Meeting of the Association for Computational Linguistics,

Toulouse, France, 2001.

[4] E. Ristad and P. Yianilos, “Learning String Edit

Distance”, IEEE Trans. Pattern Analysis and Machine

Intelligence, vol.20, pp.522-532, May, 1998.

[5] R. Sproat, Multilingual Text-to-Speech Synthesis: The

Bell Labs Approach. Kluwer, Dordrecht, 1998.

[6] J. Suontausta, and J. Häkkinen, ”Decision Tree Based

Text-to-Phoneme Mapping for Speech Recognition,” In

Proceedings of 6th ICSLP, Beijing, China, 2000.

[7] J. Tian, “Data-Driven Approaches for Automatic

Detection of Syllable Boundaries”, in Proceedings of 8th

ICSLP, Jeju Islands, Korea, 2004.

[8] J. Tian, J. Häkkinen, S. Riis, and K. Jensen, “On Text-

Based Language Identification for Multilingual Speech

Recognition Systems, In Proceedings of 7th ICSLP,

Denver, USA, 2002.

I - 308

➡ ➠

