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ABSTRACT 

Speech and language processing techniques, such as automatic 

speech recognition (ASR), text-to-speech (TTS) synthesis, 

language understanding and translation, will play a key role in 

tomorrow’s user interfaces. Many of these techniques employ 

models that must be trained using text data. In this paper, we 

introduce a novel method for training set selection from text 

databases. The quality of the training subset is ensured using 

an objective function that effectively describes the coverage 

achieved with the strings in the subset. The validity of the 

subset selection technique is verified in an automatic 

syllabification task. The results clearly indicate that the 

proposed systematic selection approach maximizes the quality 

of the training set, which in turn improves the quality of the 

trained model. The presented idea can be used in a wide 

variety of language processing applications that require 

training with text databases. 

1 INTRODUCTION 

Most automatic speech recognition (ASR) and text-to-speech 

(TTS) systems contain models that have to be trained with text 

data. Typical examples can be found from many parts of the 

systems. In pronunciation modeling, some data-driven 

approach, such as neural network based methods or decision 

tree based methods [6], are often applied, especially for 

languages like English. These statistical models are trained 

using a pronunciation dictionary containing grapheme-to-

phoneme entries. In text-based language identification [8], the 

model is trained using a multilingual text corpus that consists 

of word entries from the target languages. In the data-driven 

syllabification task [7], the model is trained using text-based 

pronunciations and the corresponding syllable structures.  

In all data-driven approaches, the selection of a suitable 

training set can be regarded as a very important step in the 

training process. In general, the performance of any trained 

model depends quite strongly on the quality of the text data 

used in the training. With text-based data, the importance of 

the training set selection is very pronounced since the 

generation of the training data entries is often very time and 

resource consuming and requires language-specific skills. In 

this paper, we show that systematic training set selection 

results in enhanced model performance and/or offers the 

possibility to use a smaller training set size. In practice, the 

reduced training set size brings two significant additional 

benefits. First, the amount of manual annotation work is 

reduced, which in turn decreases the probability of errors and 

inconsistencies in the annotations. Second, the memory 

consumption and the computational load caused by the 

training process are lowered. In some cases this advantage 

propagates to the trained model as well; the size of a decision 

tree model, for example, depends on the size of the training 

set.  

Despite the evident importance of the training set 

selection, this step is often neglected in practice. Usually, the 

training set is obtained by collecting a set of random entries 

from a larger text database or by decimating a sorted corpus. 

The drawback of these solutions is that the amount of 

meaningful information in the selected text data set is not 

maximized. The random selection method is rather coarse and 

does not produce consistent results. The method of decimating 

a sorted data corpus, on the other hand, only uses a limited 

number of the initial characters of the strings and thus does 

not guarantee good performance. 

In this paper, we present a method that can quasi-

optimally select a subset from a text database in such a 

manner that the text coverage is maximized. To achieve this, 

we define an objective function that is optimized in the subset 

selection. The objective function measures the “subset 

distance” using the generalized Levenshtein distances 

between the text strings. This paper also introduces an 

algorithm for optimizing the objective function. For practical 

applications with large databases, the algorithm can be 

modified in order to speed up the processing or to lower the 

memory consumption, but the main idea and the objective 

function will remain useful in all cases. To demonstrate the 

usefulness of the proposed approach, we evaluate it in the 

syllabification task. 

The text subset selection method introduced in this paper 

can be used in a wide variety of different applications. One 

good example is the language identification task [8], in which 

the proposed approach makes it possible to easily balance the 

number of training set entries from each target language while 

at the same time giving a good coverage for every target 

language. In addition to the training set selection task 

discussed extensively in this paper, it is possible to employ 

the same techniques for clustering a text database. Moreover, 

when used together with a meaningful distance measure, such 

as the generalized Levenshtein distance, the proposed 

approach enables the use of vector quantization techniques on 

text data. 

The remainder of the paper is organized as follows. We 

first describe the generalized Levenshtein distance and 

introduce the basic principles of the text database selection 

algorithm in Section 2. In Section 3, we describe the 

syllabification task used as the practical example by briefly 

reviewing the syllable structure grammar and the neural 

network based syllabification method. The performance of the 

proposed subset selection approach is evaluated in the 
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syllabification task in Section 4. Finally, some concluding 

remarks are presented in Section 5. 

2 SELECTION ALGORITHM 

In order to be able to select a subset from a text database in a 

systematic and meaningful manner, an objective function 

measuring the quality of the subset must be defined. The 

objective function should somehow measure the similarity or 

the dissimilarity of the entries. In the proposed approach, we 

base the objective function on the generalized Levenshtein 

distance. In this section, we first describe the basic properties 

of this distance measure and then continue by defining an 

objective function measuring the average distance within a 

subset and by introducing an algorithm for selecting subsets of 

different sizes in a quasi-optimal manner. 

2.1 Generalized Levenshtein distance 

The generalized Levenshtein distance (GLD) is defined as the 

minimum cost of transforming one string into another by 

means of a sequence of basic transformations: insertion, 

deletion and substitution [4]. The transformation cost is 

determined by the costs assigned to each basic transformation. 

Let x and y be strings of length m and n, respectively, 

whose symbols belong to a finite alphabet of size s. Let xi be 

the ith symbol of string x, with 1  i  m, and x(i) be the prefix 

of the string x of length i, i.e. the substring containing the first 

i symbols of x. In addition, let d(i,j) be the distance between 

x(i) and y(j), and ε be an empty string. Furthermore, we 

denote by w(a,b), w(a,ε) and w(ε,b) the cost of substituting the 

symbol a with the symbol b, the cost of deleting a and the 

cost of inserting b, respectively. The distance d(m,n) is 

recursively computed based on the definitions of d(0,0), d(i,0) 

and d(0,j) (i = 1…m, j = 1…n), representing the initial 

distance, the cost of deleting the prefix x(i) and the cost of 

inserting the prefix y(j), respectively, as follows: 
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The original Levenshtein distance is characterized by the 

following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is 

equal to b and 1 otherwise. Its generalized version assumes 

that different costs can be associated to transformations 

involving different symbols. In the case of an alphabet of s

symbols, this requires a table of size (s+1) times (s+1), called 

the cost table, to store all the substitution, insertion and 

deletion costs. It can be shown that the defined distance is a 

metric if the cost table is symmetric. 

2.2 Objective function and selection algorithm 

In our approach, we measure the quality of a text subset using 

an objective function based on the generalized Levenshtein 

distance. As described in Section 2.1, the Levenshtein distance 

can be used for measuring the distance between any pair of 

entries. Similarly, the distance for the whole text data set can 

be calculated by averaging the distances of all the string pairs 

in the set. Suppose that there are m entries in the database and 

the ith entry is denoted by e(i). With these definitions, we can 

compute the overall “subset distance” D as: 
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where ld(e(i), e(j)) is the GLD between the ith and jth entries. 

Based on the above objective function, it is possible to 

design an algorithm that selects a subset from a text database 

in such a manner that the distance D is maximized. The 

following algorithm recursively constructs the subset by 

always selecting the new entry that maximizes the distance to 

the other selected entries. 

1. Calculate the Levenshtein distances for all the pairs; 

ld(e(i), e(j));

2. Initially select the pair that has the largest distance among 

all pairs in the database, 
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3. Assuming that the selected subset has k entries (in the 

first time k = 2), the target now is to find the k+1-th entry 

to the subset. The selection that approximately maximizes 

the amount of new information brought into the subset 

can be done using the following formula.  
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The selected entry p is added into the subset as 

subset_e(k+1). 

4. Repeat step 3 until the preset subset size is reached. 

3 EXAMPLE APPLICATION: 

SYLLABIFICATION TASK 

The development of speech synthesizers and speech 

recognizers often requires working with sub-word units such 

as syllables [5]. We have earlier described a neural network 

based approach for the automatic assignment of syllable 

boundaries in [7]. In this paper, we revisit the topic and use 

this syllabification task for verifying the usefulness of the 

proposed subset selection approach. The first part of this 

section gives some basic information on the task and the 

second part discusses the neural network approach. The 

practical results achieved in this task are presented in 

Section 4. 

3.1 Syllable structure 

A syllable is a basic unit of word studied on both the phonetic 

and phonological levels of analysis [2]. The syllable 

information can be described using grammars [3]. The 

simplest grammar is the phoneme grammar, where a syllable is 

tagged with the corresponding phoneme sequence. The 

consonant-vowel grammar describes a syllable as a consonant-

vowel-consonant (CVC) sequence. The syllable structure 

grammar, on the other hand, divides a syllable into onset, 

nucleus and coda (ONC) as shown in Figure 1. The nucleus is 

an obligatory part that can be either a vowel or a diphthong. 

The onset is the first part of a syllable consisting of consonants 

and ending at the nucleus of the syllable, e.g. in the syllable 

[t eh k s t], /t/ is the onset and the vowel part /eh/ is the 

nucleus. The part of a syllable that follows the nucleus forms 

the coda. The coda is constructed of consonants, e.g. /k s t/ in 
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our example syllable. The nucleus and coda are combined to 

form the rhyme of a syllable. A syllable has a rhyme, even if it 

doesn't have a coda. 

In the syllable structure grammar, the consonants are 

assigned as onset or coda. The ONC representation used in the 

syllable structure grammar contains more information than the 

CVC structure for multi-syllable words. The syllable structure 

grammar was used in [7] and it is also used in this paper. 

In the automatic syllabification task, the phoneme 

sequences are mapped into their ONC representations. The 

data-driven syllabification model is trained on the mapping 

information. In the decoding phase, given a phoneme 

sequence, the ONC sequence is first generated, and then the 

syllable boundaries are uniquely decided on the ONC 

sequence. For invalid ONC sequences, a self-correction 

algorithm [7] can be applied to solve the problem by utilizing 

certain common linguistic rules. The whole syllabification task 

can be summarized as follows: 

1. Each pronunciation phoneme string in the training set is 

mapped into the corresponding ONC string, for example: 

(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C

2. The model is trained on the data in the format of 

“pronunciation -> ONC” 

3. Given a pronunciation string, the corresponding ONC 

sequence is generated using the model. Then, the syllable 

boundaries are placed at the location starting with symbol “O”,

or with “N” if it is not preceded with symbol “O”.

Figure 1. Diagram of the syllable structure grammar. 

3.2 Neural network based syllabification approach 

The basic neural network based ONC model presented in [7] is 

a standard multi-layer perceptron (MLP) shown in Figure 2. 

The input phonemes are presented to the MLP network in a 

sequential manner. The network gives estimates of ONC 

posterior probabilities for each presented phoneme. In order to 

take the phoneme context into account, a number of phonemes 

on each side of the phoneme in question are also used as inputs 

to the network. Thus, a window of phonemes is presented to 

the neural network as input. Figure 2 shows a typical MLP 

with a context size of w phonemes, phi-w…phi+w centered at 

phoneme phi. The centermost phoneme phi is the phoneme that 

corresponds to the output of the network. Therefore, the output 

of the MLP is the estimated ONC probability 

P(onck|phi−w,…,phi+w) ( { }CNOonck ,,∈ ) for the centermost 

phoneme phi in the given context pi-w…pi+w. A phonemic null 

is defined in the phoneme set and is used for representing 

phonemes to the left of the first phoneme and to the right of 

the last phoneme in a pronunciation. 

The ONC neural network is a fully connected MLP, 

which uses a hyperbolic tangent sigmoid shaped function in 

the hidden layer and a softmax normalization function in the 

output layer. The softmax normalization ensures that the 

network outputs are in the range [0,1] and sum up to unity, 
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In Equation (6), yi and Pi denote the ith output value 

before and after softmax normalization. It has been shown in 

[1] that a neural network with softmax normalization will 

approximate class posterior probabilities when trained for 

one-out-of-N classification and when the network is 

sufficiently complex and trained to a global minimum. Since 

the neural network input units are text-valued, the phonemes 

in the input window need to be transformed to some numeric 

quantity. This can be done, for example, using an orthogonal 

codebook representing the alphabet used for the ONC 

mapping task, as shown in Table 1. The last row in the table is 

the code for the phonemic null. An important property of the 

orthogonal coding scheme is that it does not introduce any 

correlation between the different letters. 
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Figure 2. Two-layer neural network architecture. 

The ONC neural network is trained using the standard 

back-propagation (BP) algorithm augmented by a momentum 

term. Each phoneme with context and the corresponding ONC 

tag of the pronunciation make up one training example. 

Weights are updated in a stochastic on-line fashion. All 

parameters are rounded off to eight bits as this was found 

sufficient for representing model parameters. 

Table 1. Orthogonal phoneme coding scheme. 

Letter Code 

aa 100...0000 

ae 010...0000 

... ... 

B 000...1000 

P 000...0100 

T 000...0010 

# 000...0001 

The outputs of the ONC neural network approximate the 

ONC posterior probabilities corresponding to the centermost 

phoneme. The ONC sequence of a pronunciation is obtained 

by combining the network outputs for each individual 

phoneme in the pronunciation. Given a pronunciation with its 

   [Syllable] 

NucleusOnset Coda

   /t/   /eh/ /k/   /s/    /t/

Word: 

text
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phonemic representation, the ONC tag of phoneme phi is 

given by 

{ }),...,|(argmax wiwik
onc

phphoncPonc

k

+−= , (7)

where ),...,|( wiwik phphoncP +−  is the network output 

corresponding to onck given the input phonemes phi-w…phi+w,

and variable w denotes the phoneme window context size, 

respectively. The variable onc takes its values from the set 

[O N C]. 

4 EXPERIMENTAL RESULTS 

The neural network based syllabification method is evaluated 

using the CMU dictionary for US English. The dictionary 

contains 10,801 words with their pronunciations and labels 

with ONC information. The pronunciations and the mapped 

ONC sequences are extracted to form the training data. The 

training set is selected from the whole database by using the 

following methods: 

• Decimation of the sorted dictionary (denoted as 

DECIMATE); 

• Subset selection from the text database using the selection 

approach proposed in this paper (denoted as SELECT). 

With both methods, the data not selected to the training set 

constitutes the test set. 
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Figure 3. ONC accuracy on test set with different training set 

sizes using the two data selection methods. 

Figure 3 shows the experimental results achieved using 

the two data selection methods. The efficiency of the training 

set selection approach can be studied by evaluating the 

generalization capability. The general rule of thumb is that the 

more training data is available, the better performance can be 

expected. However, the selection of the training data affects 

the generalization capability: if the training data is well 

selected, the performance can be improved without increasing 

the size of the training set. The results clearly show that the 

proposed subset selection technique outperforms the 

commonly used decimation method; the average improvement 

achieved using the proposed approach is 38.8%. 

Figure 4 illustrates the “subset distance” (see Section 2.2) 

of datasets extracted using the two different data selection 

methods: the decimation technique and the proposed selection 

algorithm. It is easy to see that the average distance D is more 

or less even when the decimation method is used. With the 

proposed method, the average distance decreases 

monotonically with increasing data size. Furthermore, the 

difference between the two methods is large with small subset 

sizes, and converges to zero when the whole data set is used. 

Thus, these results indicate that the proposed method can 

extract data more efficiently, i.e. the selected data has better 

coverage. Naturally, this explains the better generalization 

capability of the trained model. 
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Figure 4. Average distance D inside the subsets extracted 

using the two different data selection methods, with respect to 

the percentage of the subset size vs. the whole data size. 

5 CONCLUSIONS 

Training data selection from a text database is a crucial, but 

often neglected, step in the development of ASR and TTS 

systems. In this paper, we define an objective function that 

effectively measures the quality of a selected subset. 

Moreover, we introduce a subset selection algorithm that 

optimizes the objective function. Our experimental results 

obtained in the syllabification task show that the proposed 

approach is a very promising technique that makes it possible 

to select subsets with good coverage in a systematic and 

meaningful way. The presented idea can be used in many 

different applications that require training with a text database. 
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