
COMPRESSION OF EXCEPTION LEXICONS FOR SMALL FOOTPRINT
GRAPHEME-TO-PHONEME CONVERSION

Joram Meron Peter Veprek

Panasonic Digital Networking Lab., Santa Barbara, CA 93105
(jmeron,pveprek)@research.panasonic.com

ABSTRACT

In this work we present a method to reduce the mem-
ory footprint of a grapheme to phoneme conversion (G2P)
module, without sacrificing accuracy.

Since the G2P module is typically not 100% correct, it is
common to augment the system with an exception lexicon
- a list of words which the G2P does not handle correctly
(and for which we require correct pronunciations), along
with their corrected pronunciation.

Since the size of the exception lexicon is one of the ma-
jor limiting factors in reducing the overall size of the G2P
module, we try to compress the exception lexicon.

We suggest a novel compression method, which is closely
tied to the G2P conversion method. The idea behind this
compression is that even for words which are not transduced
correctly, the decision trees generate a phonetic transcrip-
tion which is close to the correct one. Therefore, it is suffi-
cient to store only the correction in the exception lexicon.

The correction information is represented in terms of
corrections to the transduction process, and thus is able to
take advantage of the knowledge gained from the training
data regarding the probabilities of different corrections, which
is used to obtain more efficient compression.

An experiment showed that using this method, an ex-
ception pronunciation can be represented, on average, with
less than 4 bits (a compression factor of 7, compared to the
baseline representation).

1. INTRODUCTION

In this work we are primarily interested in the use of grapheme
to phoneme conversion (G2P) for the purpose of pronounc-
ing names, for applications with memory size restrictions
(e.g. embedded speech synthesis on a cell phone).

The common approach to G2P conversion is to apply
automatic learning methods to a training database, and pro-
duce more compact representations, which are able to gen-
eralize to unseen input [2] [3].

Similar to [3], our system [1] uses decision trees, but
instead of purely automatic, data driven growing of the de-
cision trees, the hybrid method allows the developer the op-

tion to directly specify the structure of initial trees (by writ-
ing ‘rules’). These initial trees are then expanded automati-
cally using a data driven method.

The accuracy of this system compared favorably with
other current systems. This system also presented advan-
tages in terms of dictionary maintenance, as well as allow-
ing the use of linguistic knowledge for improving the G2P
performance (especially to prevent some of the more ‘offen-
sive’ phonetization errors).

Some applications have specific domains for which 100%
correct performance is required (e.g. a list of the most fre-
quent names). For these cases, the common solution is to
collect the names, for which the system does not produce
the correct transcription, into an exception lexicon - a sepa-
rate list holding names and their correct phonetic transcrip-
tions. If a word appears in the list, its transcription is di-
rectly pulled from it. Otherwise, the transcription is ob-
tained by running the word through the transduction pro-
cess.

This work concentrates on a method for compressing the
transcriptions in the exception lexicon. The compression
method relies on making use of the transduction process -
storing only corrections to it, instead of the full phonetic
transcription.

2. HYBRID G2P - OVERVIEW

I this section we briefly review the hybrid method that we
use for G2P conversion. For more details, please see [1].

Our system trains separate decision trees for each pos-
sible input letter. To each tree node, a binary question is
attached (e.g. “is the the previous letter a vowel ?” or “is
the letter two positions back a ’b’ ?”), which leads to the
next node (depending on the answer), and ultimately lead
to a leaf node, which gives the appropriate answers, and the
probability of each answer. Each answer can be zero, one
or more phonemes.

In this paper we primarily deal with multiple output leaves,
which can be used to find the N most probable transcriptions
for the given input (which is useful when sharing the G2P
module with a recognition system). However, with some

I - 2930-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

t e t h e r t eh dh er

t e t h e r t eh dh er

t e t h e r t eh dh er

t e t h e r t eh dh er

t e t h e r t eh dh er

e : eh / ih / ax /

th : th / dh / t hh

er : er / eh r / ea / ea r / ax

t : t

Letters RulesPhonemes

Fig. 1. Rule machine run on the word (“tether”) and its
transcription (‘t eh dh er’). Arrows indicate the position of
the reading heads after each rule is applied.

modifications, the suggested compression method can be
used with (mostly) single output leaves.

2.1. Rules

In [1], rules were introduced in order to improve the perfor-
mance of the G2P system.

The rules are standard context-sensitive rewrite rules of
the general format:� � � � � � � � � � 	 � � � � �
 � 	 � � � � � � � � � 	 � � � � 	 � � � � � � � �

Where, ‘
� � � � �
 �

’ can be one or more letters to be trans-
duced together as a block. The left and right contexts in-
clude zero or more letters or pre-defined letter sets (e.g.
vowels, consonants, etc.). ‘

� � � �
’ can describe other fea-

ture requirements for this rule (e.g. specifying previously
transduced phonemes, number of vowel clusters seen, or
any other useful feature that could be computed during run
time). ‘

� � � � � � �
’ specifies the resulting phonemes - zero,

one, or several
The rules are interpreted by a rule machine (similar to

a two heads Turing machine) which, given a word and its
transcription, can either accept or reject the pair. The pro-
cess of processing a word and its transcription is illustrated
in figure 1.

At each step, one rule is selected from the rule set, and if
possible (i.e. if one of the possible results matches the tran-
scription) applied - the heads are advanced according to the
number of letters and phonemes consumed by the rule. If no
applicable rule is found, the pair is rejected (rejected words,
which typically account for around 1-2% of the words, can
be treated by a ’conventional’ exception lexicon, and are
excluded from the discussion in this paper).

2.2. Decision Trees

We use decision trees in a way similar to [3][5]. The only
modification to the decision trees is that instead of holding
one output phoneme in each tree leaf, the leaf now holds:

1) an output phoneme sequence, and 2) the length of the
grapheme block to be consumed (i.e. after output is pro-
duced for the current letter, the G2P will consume the indi-
cated number of letters, and advance to the first letter after
the current block).

For storage efficiency, we define an output codebook
for each of the possible input graphemes. This codebook
contains all the different possible combinations of�

output phoneme sequence ; letter block length
�

(the size of this codebook can reach a few hundreds for
some letters). In each leaf, we store an output code (which
refers to the output codebook).

The data for training the trees is produced by the rule
machine. For each step of the rule machine (each line, ex-
cept the last, in figure 1), one output vector is added to
the training data. This vector includes the letter context
around the location of the letter reading head, the previous
phonemes produced prior to the location of the phoneme
reading head, auxiliary features calculated for that point,
and the corresponding output code mentioned before.

The manually created rules are used to automatically
create initial decision trees (one tree for each possible in-
put grapheme). For each of the manual rules, one branch is
added, which consists of all the components of the rule (one
component per each branch node). It’s easy to see that the
rules force an initial segmentation of the training data - they
let the developer decide what cases are “similar” or “belong
together” - as opposed to the results of automatic tree build-
ing, where disparate cases might be grouped together based
on irrelevant similarities. This also allows manual control
over the structure of the tree, thus alleviating the ‘black box’
nature of the data driven method.

The final step is an automatic extension of the initial
tree, using a data-driven process, which is similar in prin-
ciple to the methods in the references (but trained on data
produced by the rule machine, as explained above).

First, each training vector is associated with its corre-
sponding terminal nodes in the initial tree (corresponding to
a rule). Then, a standard tree building process is used to ex-
tend the tree from each terminal node (using its associated
training vectors).

3. COMPRESSING EXCEPTION LEXICONS

As mentioned above, the size of a G2P is an important fac-
tor for some applications in which we’re interested. The
G2P system is made of the decision trees and the excep-
tion lexicon. There is a trade-off between the sizes of these
components - as we try to shrink the trees (e.g. by a prun-
ing process), more incorrect pronunciations are generated,
which requires increasing the size of the exception lexicon.

Depending on the degree of pruning of the trees, and
the composition of the exception lexicon, the limiting factor

I - 294

➡ ➡

for making the G2P system smaller is often the size of the
exception lexicon.

We suggest a method for compressing the transcriptions
in the exception lexicon, in which, instead of storing the
whole transcription, only corrections to the transduction pro-
cess are stored. In this way, we are able to apply the knowl-
edge represented in the trees, even for words in the excep-
tion lexicon, for all but a small part of the transduction pro-
cess.

3.1. Transcription Corrections

As explained above, the training set, used for the automatic
growing of the trees, is generated by running pairs of� 	 �

through the rule machine, and
collecting the output vectors, which include letter context,
available features, and the correct output at each step

After training the trees, we can run the G2P transducer
(without an exception lexicon) over the training data, and
compare the generated output at each step, to the correct
output (as it appears in the corresponding training vector).

For most words, the transduced outputs are the same as
the correct ones. For those words which differ, we note the
correct output for the points where they differ, and the loca-
tion (step number) of this point. Thus a correction is repre-
sented as a pair:

� � � � � � � 	 � � � � � �

.

Having stored this information, we can obtain the cor-
rect transcription for the word in the following way:

1. Start by setting the current position pointer to the its
first letter, and set step number to 0.

2. Use the tree of the letter in the current position

3. Traverse tree - obtaining the active leaf (the matching
terminal node).

4. If no correction for this step - output phoneme(s) indi-
cated by leaf’s output code, and advance current po-
sition as indicated by this code.

5. If a correction is given, output letter(s) indicated by
correction output code, and advance current position
as indicated by it.

6. Advance step by 1

7. If current position hasn’t reached word end - repeat
from step 2.

Storing these correction pairs can already achieve some
compression, since we need to store corrections only for a
small number of the transduction steps (as even for wrongly
transduced words, most transduction steps are correct).

To test this claim, trees were trained on a train set con-
taining 94130 words (British names). The same words were
transduced using these trees, and the number of corrections

per word were counted. The results are shown in table 1.
For words with at least one error (the 16031 words, which
would consist the exception lexicon), only 17875 out of
91086 transductions (19.7%) need correction.

Number of errors Occurrences
0 78099
1 14372
2 1520
3 138
4 11

Table 1. Number of transduction errors per word.

3.2. Transcription Alternatives

The output code contained in the corrections refers to a
grapheme’s output code which can be quite large (hundreds
of output combinations for some graphemes) - which puts a
limit on the reduction of the number information bits needed
to represent a correction.

As mentioned above, the leaves of the decision trees
contain lists of several possible outputs, along with their
probabilities, which are used to find the best transcription
(or transcriptions) for the input word.

This can be used to compress the correction informa-
tion, as for a given transduction step, the correct output to
be produced is one of the entries in the active leaf’s list of
possible outputs. In most cases, the first output on the list is
the correct output (since the list is sorted by descending or-
der of frequency), so no correction is needed. If a correction
is needed, it will be one of the other possible outputs.

The way the trees were built guarantees that the correct
output will be in the list of possible outputs of the active
leaf. This is because the same step, for the same word (when
used in the training), was classified to the same leaf, and
therefore its output is in that leaf’s possible output list.

The correction, therefore, can be specified as the one
out of the possible outputs for the active leaf, rather than
one of all the possible entries in the current grapheme’s out-
put codebook. Thus, a correction takes the form

� � � � � �

� � � � � � �

- meaning: “take the j-th alternative in the i-

th step”. The leaf’s list of possible outputs is much shorter
(typically 1-4 entries) than the grapheme’s output codebook,
which makes for a significant saving in storage space.

Switching from specifying the letter’s output code num-
ber to specifying the leaf’s alternative number provides fur-
ther savings when we consider the compressibility of the
distributions - e.g. when applying a Huffman coding (which
reduces average bit number by allocating less bits to more
common codes). Table 2 shows the distribution of the dif-
ferent alternative numbers.

I - 295

➡ ➡

Alternative Occurrences
1 15425
2 1990
3 350
4 72
5 21
6 10
7 5

Table 2. Frequency of use of alternatives.

The frequency distribution of the grapheme’s output code-
book is collected over the whole tree - all the appearances
of the letter, and is therefore too general. For the leaf’s al-
ternatives, on the other hand, the distribution is calculated
locally, and is more specific. Another way of looking at it
is that it takes full advantage of the knowledge which is al-
ready embedded in the tree. Given a specific context, the
trees tell us to go to a specific leaf, and output a specific
alternative. Even if the suggested alternative is not the cor-
rect one, the leaf is correct, which saves us a few bits of
information.

Last, we observe the different combinations of correc-
tions - all the different combinations of

� � � � � � � � � � � � � � �
�

� 	

which appear together for any one word. For the database
used in our experiment, there were 259 different correction
combinations. A histogram of their frequency is shown in
figure 2, and can be significantly compressed using Huff-
man coding.

Fig. 2. Number of occurrences of all the different correction
combinations.

3.3. Compression Experiment

We’ve used the same database, to compare the required size
for representing the transcriptions in the exception lexicon
(16031 words), using the different methods.

For the baseline method, the transcription is represented
as a string of phonemes, each phoneme represented by a
minimum length code (Huffman code). For the lexicon used,
the average transcription length is 5.75 phonemes per word.
The average length of a phoneme’s code (calculated using
entropy) is 5.01 bits. Therefore, on average, each transcrip-
tion requires 28.8 bits.

With the proposed compression method, the average stor-
age required per transcription is 3.9 bits (obtained from the
entropy of the distribution in figure 2).

4. CONCLUSION

A method of compressing exception lexicons was presented,
which takes advantage of the knowledge represented inside
the trees, even when the trees’ default output is wrong. Us-
ing this compression, a significant reduction in the size needed
to represent a transcription was shown (a factor of 7).

Further work will be done on trying to reduce the size
of the trees by pruning the lists of possible outputs for the
leaves. One way to achieve this is to hold a full list of alter-
natives in some ancestral node, and having the corrections
refer to these lists instead. In addition to compressing the
transcriptions, compression should also applied to the list
of the words (spellings) in the exception lexicon.

5. REFERENCES

[1] Meron J., “Using Rules to Improve Letter to Sound
Conversion of Names”, IEEE Workshop on Speech
Synthesis, 2002, Santa Monica

[2] Damper R.I. et al., “A Pronunciation-by-Analogy
Module for the Festival Text-to-Speech Synthesizer”,
Proc. 4th ISCA workshop on speech synthesis, 2001,
pp. 97-101

[3] Pagel V., Lenzo K., Black A.W., “Letter to Sound
Rules for Accented Lexicon Compression”, Proc. IC-
SLP 1998, pp. 2015-2018

[4] Andersen O., Kuhn R., et al., “Comparison of
Two Tree-Structured Approaches for Grapheme-to-
Phoneme Conversion”, Proc. ICSPL 1996, pp. 1700-
1703

[5] Kuhn R., Junqua J.C., Martzen P.D., “Rescoring
Multiple Pronunciations Generated from Spelled
Words”, Proc. ICSLP 1998, pp. 2707-2710

[6] Pearson S., et al., “Automatic Methods for Lexical
Stress Assignment and Syllabification”, Proc. ICSLP
2000, pp. II 423-426

I - 296

➡ ➠

