
ONLINE CEPSTRAL FILTERING USING A SEQUENTIAL EM APPROACH WITH POLYAK
AVERAGING AND FEEDBACK
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ABSTRACT

We propose an online filtering algorithm that aims to alleviate the
decrease we see in ASR performance when the speech is corrupted
by additive noise. Using an initial estimate of the noise distri-
bution, the algorithm updates the noise model on a frame syn-
chronous basis. Using Polyak averaging we obtain a sequence
of robust, frame-synchronous noise model estimates, and a min-
imum mean square error (MMSE) filter is used to denoise the cep-
stral coefficients. The algorithm is compared to a batch version
which uses several iterations of the EM-algorithm over the com-
plete utterance to estimate the noise model, and it is shown that
the performance obtained using the averaging of the noise model
is comparable to the batch performance.

1. INTRODUCTION

It is well known that mismatches between the training and testing
conditions of an ASR system leads to a significant performance
drop. Such mismatches include varying acoustic channels, speaker
variation, additive noise or a combination of the previous condi-
tions. In this work we will be concerned with the problem of addi-
tive noise, which is of particular interest when deploying an ASR
system in a noisy environment.

In general there are two approaches available to us in the case
of mismatch between the ASR system and the working environ-
ment: One can either change the acoustic model, usually a hidden
Markov model (HMM), to reflect the new conditions, or one can
compensate for the mismatch by transforming the acoustic feature
vectors to better match the ASR system. The former approach,
which in theory is superior due to the data processing theorem,
covers the well known MLLR[1] and MAP adaptation[2]. Another
model adaptation approach that works directly under the assump-
tion of the speech being corrupted by additive noise, is the parallel
model combination(PMC)[3].

Although suboptimal in the theoretical sense, the feature adap-
tation approach has been used successfully in various algorithms.
Feature adaptation approaches can make use of smaller amounts
of data for the adaptation, as there are fewer parameters to learn.
Also, feature adaptation usually has a much lower computational
complexity than general model adaptation approaches. This en-
ables us to do make the adaptation time-varying, which is neces-
sary under non-stationary conditions.

In this work we try to recover the original, clean speech cep-
stral features using a non-linear, minimum mean square error filter,
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and so our approach is consistent with the feature adaptation ap-
proach.

As will be demonstrated in section 2, the linear mixing of
noise and speech in the time/spectral domain, results in a highly
non-linear combination of the speech and noise cepstral coeffi-
cients. Previous work including the vector Taylor series (VTS)
approach[4] and the Jacobian approach[5], used linear approxima-
tions to circumvent the nonlinearities. An exact formulation of
the noise estimation and cepstral filtering problem was presented
in [6], where numerical integration routines were utilized to solve
the estimation and filtering equations. An effective approximation
to the integrals that both lowered the computational complexity
and improved numerical stability was presented in [7].

In this paper we address two issues that have some practical
interest. The batch-filtering approach is not practical for use with
a real system as the delay may be prohibitive. Also, the assumption
that the noise is stationary is usually not accurate in most practical
situations. We address these two issues by turning from at batch,
EM-estimation approach to an online approach based on the se-
quential EM algorithm [8]. In addition we use Polyak averaging
plus average feedback to obtain a more robust estimate that has
theoretically better convergence properties in the stationary case
[11, 10].

This paper is structured as follows: In section 2 we give a brief
overview of the theoretical basis of the nonlinear filtering approach
that we base this work on. In the section 3 an online version of
this filter is developed. In section 4 we present some experiments
that demonstrate the validity of our approach, followed by some
concluding comments.

2. NOISE PARAMETER ESTIMATION

When speech is corrupted by additive noise in the time or spec-
tral domain, the effect in the log-spectral domain is a non-linear
mixing of the noise and the speech,

zt = xt + log
`
1 + ent−xt

´
, (1)

where x is the speech, n is the noise and z is the corrupted speech,
all in the log-spectral domain and all indexed by the time t. We fol-
low common practice and assume that the noise n is Gaussian with
unknown mean, µn, and variance, σn, while the speech is modeled
as a mixture distribution with known parameters. One way to alle-
viate the effect of the noise is to find the minimum mean-square-
error estimate of the clean speech. The optimal mean-square-error
(MSE) estimator is given by

x̂ = EX|Z [x], (2)
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where EX|Z is the conditional expectation operator. In order to
perform this filtering we need to estimate the unknown parameters
of the noise distribution.

2.1. Exact EM formulation

We have previously shown that the noise parameter estimation
problem can be cast as a missing data problem, where the cor-
rupted speech {zt} is the incomplete data, and {zt, xt} are the
complete data. This motivates the use of the EM-algorithm to find
the noise parameter estimates. We form the auxiliary function

Q(Λ′, Λ(i))

=EX|Z
h
log pX,Z

“
{xt, zt}T

t=1|Λ′
” ˛̨̨

Λ(i), {zt}T
t=1

i (3)

where Λ = {µn, Σn} are the parameters of the noise model.
In [6] it is shown that the maximum of (3) with respect to the

noise parameters is obtained using,

µ̂n =
1

T

TX
t=1

Z zt

−∞
n(zt, xt)pX|Z(xt|zt, Λ

(i))dxt (4)

σ̂2
n =

1

T

TX
t=1

Z zt

−∞
(n(zt, xt) − µ̂n)2 pX|Z(xt|zt, Λ

(i))dxt, (5)

where

pX|Z(xt|zt, Λ) =
pZ|X(zt|xt, Λ)pX(xt)

pZ(zt|Λ)

=
∂n(zt, xt)

∂zt
pN (n(zt, xt)|Λ)

pX(xt)

pZ(zt|Λ)
.

(6)

and
n(zt, xt) = log

`
1 − ext−zt

´
+ zt, (7)

There is no known closed form of the probability density function
pZ(zt|Λ), but it can be calculated numerically using the integral

pZ(zt|Λ) =

Z zt

−∞
pZ|X(zt|xt, Λ)pX(xt)dxt. (8)

2.2. Approximative integrals

In [6] the integrals involved in the iterative estimation procedure
was solved using a combination of standard quadrature integral
solvers and asymptotically exact approximations of ill-behaved
parts of the integrands. The resulting procedure was very slow
due to the numerical integration routines. A solution to this prob-
lem was presented in [7], and a very brief description is given here.
We only focus on the integral in equation (8), and refer to [7] for
expressions for the mean and variance. Writing out the complete
expression we have,

pZ(zt|Λ)

=

Z zt

−∞

1√
2πσ2

n

e
− 1

2

 
log(1−ext−zt)+zt−µn

σn

!2

1 − ext−zt
pX(xt)dxt

=

Z 1

0

1√
2πσ2

n

e
− 1

2

“
log(u)+zt−µn

σn

”2
u

pX(log(1 − u) + zt)

1 − u
du,

(9)

from the variable substitution u = 1 − ext−zt .
The expression can be simplified even further using the fact

that 1
u

= e− log(u). This enables us to include the denominator t
in the exponential, which in turn can be written,

e
− 1

2

„
log(t)+zt−µn+σ2

n
σn

«2

e−µn+zt+
σ2
2 . (10)

The same reasoning is used to include the term 1
1−t

in every mix-
ture component in pX(log(1 − t) + zt).

For every mixture component of pX(log(1− t)+zt), we now
have a product of two Gaussians, both being functions in log(t)
and log(1− t). The key step now is to do piecewise linear approx-
imations of these two functions. Both functions are smooth over
the majority of the [0, 1] domain, with the exceptions of t = 0, 1,
where log t and log(1 − t) goes to minus infinity, but in these re-
gions asymptotically exact approximations can be used. Exchang-
ing log(t) and log(1−t) by approximations of the form at+b gives
us a product of two functions that are proportional to Gaussians in
the variable t. The product of two Gaussians is well known to be
Gaussian, and so the integral in every interval can be approximated
by the integral of a Gaussian, for which an efficient functional form
exists[9].

3. SEQUENTIAL EM FORMULATION

The following material is based on the general sequential algo-
rithm using incomplete data that was presented in [8]. For a more
detailed description of the principles described here as well as
other applications, the readers should consult the original article.

3.1. Theoretical motivation

Online algorithms are used to minimize some object function using
one observation at the time, controlling the contribution of this
observation using a learning rate γ.

In the case of incomplete data the we define the auxiliary func-
tion

Qt(Λ, Λ′) = EΛ′ [log fX(xt|Λ)|Y = yt], (11)

where xt represents the complete data. Maximizing this function
iteratively with respect to Λ also maximizes the log likelihood,
log fY (yt). However, this estimate based on a single sample is
not very reliable.

What we really want to find, is the maximizer of the the ex-
pectation of the auxiliary function with respect to the observation
yt at the true distribution parameter, Λ0,

J(Λ) = EΛ0 [Qt(Λ, Λ′)], (12)

Clearly, to maximize J(Λ) is to maximize the expected value of
log fY (yt).

We now use the reasoning that the ensemble average implied
by equation (12) is equal to the time average under the assump-
tion of an ergodic observation sequence. We can then estimate the
maximizing parameter in an online sense using the recursion,

Λ(t+1) = argmax
Λ

Qt+1(Λ, Λ(t)). (13)

The reliance on the ergodicity of the source may seem incon-
sistent with the one of the stated goals of this work, which was to
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handle non-stationary noise. A modification of the update algo-
rithm of equation (13) is given by

Λ(t+1) = argmax
Λ

Ψt+1(Λ) (14)

where

Ψt+1(Λ) = γtΨt(Λ) + Qt+1(Λ, Λ(t)). (15)

In the case that 0 < γt = γ < 1 we obtain an exponential weight-
ing that forgets older observations as the estimates are updated.
This enables us to track changing noise characteristics at the price
of the estimates having larger variance.

3.2. The online estimation algorithm

The theory summed up in the previous section is directly applica-
ble to our problem. The auxiliary function Qt+1(Λ, Λ(t)) can be
derived directly from equation (3) by looking at a single frame at
the time, i.e.

Qt+1(Λ, Λ(t))

=EX|Z
h
log pX,Z (xt+1, zt+1|Λ)

˛̨̨
Λ(t), zt+1

i
=

Z
log pX,Z (xt+1, zt+1|Λ) dPX|Z

“
xt+1|zt+1, Λ

(t)
”

,

(16)

Note that the sequence of estimates are indexed by the time t here.
Setting γ0 = 1 the recursion in equation (15) can be rewritten as

Ψt+1(Λ) = Qt+1(Λ, Λ(t)) +

tX
l=0

 
tY

k=l

γk

!
Ql(Λ, λ(l−1)),

(17)
which, using the simplification γt = γ, can be reduced to

Ψt+1(Λ) =

tX
l=0

γlQt−l+1(Λ, Λ(t−l)). (18)

It is now easy to show that the values of the mean, µ(t+1)
n , and

variance, σ
2,(t+1)
n , that maximizes equation (18), are given by the

recursions,

µ(t+1)
n = (1 − γ)n̂t+1 + γµ(t)

n , (19)

and

σ2,(t+1)
n = (1 − γ)ŝt+1 + γσ2,(t)

n , (20)

where

n̂t =

Z zt

−∞
n(zt, xt)pX|Z(xt|zt, Λ

(t−1))dxt, (21)

and

ŝt =

Z zt

−∞

“
n(zt, xt) − µ(t)

n

”2

pX|Z(xt|zt, Λ
(t))dxt. (22)

Finally, using the current estimate of the noise model at time
t, we can find the filtered cepstral coefficients according to equa-
tion (2).

3.3. Polyak averaging and feedback

First, let ε = 1−γ, and rewrite equation (19) in a form that makes
the connection to stochastic approximation techniques clearer:

µ(t+1)
n = εn̂t+1 + (1 − ε)µ(t)

n

= µ(t)
n + ε(nt+1 − µ(t)

n ).
(23)

It is well known from stochastic approximation that the choice of
ε can be critical with respect to the convergence speed. There
are however methods that can compensate for this sensitivity. We
define the Polyak average as

µ̄(t)
n =

1

T

sX
s=t−T+1

µ(s)
n . (24)

It can be shown that the estimator µ̄
(t)
n under some mild conditions

has lower variance than µ
(t)
n and converges faster to a stationary

value, if it exists [10].
It can also be shown that by using the average in a feedback to

the main stochastic approximation recursion, both the the online
estimate, µ(t)

n , and the average, µ̄(t)
n , can be further improved [11]:

µ(t+1)
n = µ(t)

n + ε(nt+1 − µ(t)
n ) + εA(µ̄(t)

n − µ(t)
n ), (25)

where A is a scaling factor that should typically be larger that one
[11].

In the next section we will present a series of experiments that
applies the online algorithm described in this section on a subset
of the Aurora 2 task.

4. EXPERIMENTS

The experiments that follow are conducted on a subset of the AU-
RORA 2 task, specifically the speech contaminated by “Subway”
noise. In all the experiments the recognizer is based on the stan-
dard Aurora 2 hidden Markov model training scripts. The features
used are the first 13 cepstral coefficients with both velocity and ac-
celeration parameters, which makes it 39 features all in all. Note
that we use the 0th cepstral coefficient instead of log-energy. The
experiments are all performed by denoising the noisy speech using
either the online or the batch filter, and then performing ordinary
recognition using the clean speech HMM.

We want to investigate the use of our online approach as is,
as well as the rapidly convergent extension using Polyak filtering
and feedback. No exhaustive search for the “best” set of parame-
ters have been conducted – the learning rate, ε, and the feedback
scaling term, A, are the same as the ones used in [11]. The aver-
aging window lengths are chosen to represent 100 ms and 500 ms
of speech, respectively.

The initial noise model parameters are estimated using the
first 10 frames in the utterance. For averaging window lengths
larger than this, we grow the window dynamically until the re-
quired length is satisfied. The distribution of the speech is repre-
sented by a Gaussian mixture model (GMM) having 64 mixtures,
trained on clean speech.

A joint presentation of the experiments with different parame-
ter settings are given in figure 1. As we can see both the online ap-
proaches clearly outperforms the baseline, but the use of averaging
and feedback gives a significantly better performance, as expected.
For some parameter setting the performance is close to that of the
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batch filtering, and overall the performance seems to be somewhat
robust with respect to the parameters. This is consistent with the
claims made in [11].
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Fig. 1. Comparison of baseline performance, “pure” online filter-
ing, filtering with averaging and feedback, and batch filtering. Pa-
rameters A ∈ {2.5, 5}, T ∈ {10, 50} and ε ∈ {0.01, 0.05, 0.1}
was used for the feedback approach, and ε = 0.01 was used for
the online filtering without feedback.

In table 1 we present the best performance we achieved on this
task. The parameter settings used for this experiment is typical
of what we observed during our experiments. The highest learn-
ing rate, ε, performed the best, and shorter averaging windows
also marginally outperformed longer ones with the other param-
eters held constant. The first observation is consistent with [11],
where it was claimed that a higher learning rate should be used to
compensate for the smoothing of the feedback. The performance
shorter averaging window may indicate that some short term noise
tracking is going on. The difference in results for different val-
ues of A was much less significant than the previous two factors,
although for smaller value, A = 2.5, the algorithm seemed to per-
form slightly better.

SNR Baseline Online Online+FB Batch
ε = 0.01 ε = 0.1

A = 2.5
T = 10

-5dB 10,72 13.72 19.68 20,08
0dB 20,94 26.53 45.90 43,78
5dB 45,26 53.95 71.17 72,34
10dB 73,87 80.10 86.92 88,49
15dB 92,08 91.71 93.21 94,14
20dB 96,90 95.73 95.79 96,53
∞dB 99,11 98.50 98.09 98,50

Average 62,70 65.75 72.97 73,41

Table 1. Recognition results on speech corrupted by subway noise
at different SNRs. The best performances for the online with and
with out averaging and feedback are given here. Three EM itera-
tions was used to estimate the noise using the batch filter.

5. CONCLUSION

We have presented an online filtering approach based on the se-
quential EM algorithm. We also extended the classical algorithm
with Polyak averaging and feedback. In our experiments we show
that the performance of this online algorithm is comparable to the
performance of a batch filtering algorithm that utilizes multiple
steps of the EM algorithm.
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