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ABSTRACT

This paper addresses the main speech recognition problem in non-
stationary noise environments: the estimation of noise sequences.
To solve this problem, we present a particle filter-based sequential
noise estimation method for front-end processing of speech recog-
nition in noise. In the proposed method, a noise sequence is esti-
mated through a sequential importance sampling step, then a resid-
ual resampling step, and finally a Markov chain Monte Carlo step
with Metropolis-Hastings sampling. The estimated noise sequence
is applied to MMSE-based clean speech estimation method. The
evaluations were conducted on speech recognition in highly non-
stationary noise environments. In the evaluation results, we ob-
served that the proposed method improves speech recognition ac-
curacy in non-stationary noise environments over noise compen-
sation with stationary noise assumptions.

1. INTRODUCTION

Noise robustness is one of the most important problems for the ap-
plications of speech recognition techniques in real environments.
For this problem, when adverse noise is restricted to stationary
noise, a lot of research in speech recognition in noise has been
reported [1]-[4]. However, most of the noise observed in real en-
vironments have non-stationary characteristics. To improve the
speech recognition accuracy in non-stationary noise environments,
it is necessary to estimate the noise sequence as accurately as pos-
sible. However, the estimation of non-stationary noise sequences
is difficult because, in most cases, the observable signal when
speech recognition is performed is the only noise added to the
speech signal. So both clean speech and noise have non-stationary
characteristics.

To solve such problems, several estimation methods of non-
stationary noise sequences based on a sequential EM algorithm
are reported [5]-[7], that can estimate noise sequence effectively.
However, their computation costs are expensive because frame by
frame iterative estimation is required to converge noise parameters.
Recently, a particle filter-based sequential estimation method [8, 9]
has attracted attention and been applied to various research fields.
The particle filter is a Bayesian estimation method, whose main es-
timation framework is based on a sequential Monte-Carlo method.
Therefore, the computation costs of the particle filter are cheaper
than a sequential EM algorithm because iterative estimation is not
required.

In this paper, we present a sequential non-stationary noise es-
timation method based on a particle filter. In the proposed method,
the sequence of non-stationary noise is estimated through extended
Kalman filter-based sequential importance sampling, residual re-

sampling, and a Markov chain Monte Carlo with Metropolis-Hastings
sampling. Then, noise estimation is carried out frame by frame,
and the estimated noise sequence is applied to a minimum mean
square error (MMSE)-based clean speech estimation method [2].

A particle filter-based method similar to our proposed method
was also reported by Yao et al [9]. Yao’s approach is an HMM
composition-based acoustic model compensation method which
updates an acoustic model sequentially by using estimated noise.
On the other hand, our approach is a noise compensation method
for front-end processing of speech recognition. Therefore, our
method can carry out such multiple stage processing as a combina-
tion of front-end noise suppression and acoustic model adaptation
for residual noise caused by front-end processing. Moreover, in
a HMM composition method, a noise-compensated HMM is com-
posed by using a clean speech HMM and a noise HMM. Generally,
both clean speech and noise HMMs used for a HMM composition
method are trained by using data without cepstral mean subtrac-
tion (CMS). Therefore, a HMM composition method cannot be
applied to the CMS for the testing (observation) data.

On the other hand, the proposed method can be applied to
CMS to estimated clean speech because it is a noise compensa-
tion method for front-end processing, and the acoustic model is
trained by using estimated clean speech after CMS processing.

Our proposed method was evaluated on a connected Japanese
digits recognition task [10], conducted on speech recognition in
highly non-stationary noise environments. In the evaluation re-
sults, we observed that the proposed method improves speech recog-
nition accuracy in non-stationary noise environments over noise
compensation with stationary noise assumptions.

2. PARTICLE FILTER-BASED NOISE ESTIMATION

2.1. Dynamical system for noise sequence

A dynamical system can be defined by two equations: a state tran-
sition equation that represents the dynamics of the target signal,
and an observation equation that represents the output system of
the observed signal.

Let Xt, St, and Nt denote the vectors at t-th short time frame
which have logarithmic output energy of Mel-filter bank of ob-
served noisy speech, clean speech, and noise, respectively. The
dynamical system for noise sequence is represented as follows.

First, assume that clean speech St can be modeled by a hid-
den Markov model (HMM). At time t parameter Sst,kt,t is gener-
ated from a Gaussian distribution kt contained in state st of clean
speech HMM. In this case, the observation process of Xt can be
modeled by the following equation by using Nt and error signal
Vt,
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Xt = Sst,kt,t + log (I + exp (Nt − Sst,kt,t)) + Vt

= f (Sst,kt,t,Nt) + Vt (1)

Vt ∼ N (0,ΣS,st,kt), (2)

where ΣS,st,kt denotes the diagonal covariance matrix of Gaus-
sian distribution contained in clean speech HMM.

On the other hand, we assumed that the state transition process
of Nt can be modeled by a random walk process as follows:

Nt = Nt−1 + Wt (3)

Wt ∼ N (0,ΣW), (4)

where Wt and ΣW denote the driving noise for state transition
process and diagonal covariance matrix of Wt, respectively.

2.2. Sequential importance sampling for particle filtering
When a dynamical system derived by Eqs. (1) and (3) is given, a
posteriori probability density function (PDF) for the sequence of
Nt can be represented by a first order Markov chain as follows:

p(N0:t|X0:t) = p(N0|X0)
tY

t′=1

p(Nt′ |Nt′−1)p(Xt′ |Nt′), (5)

where N0:t = {N0, . . . ,Nt} and X0:t = {X0, . . . ,Xt}. There-
fore, N0:t is estimated as the signal which recursively maximizes
the above PDF. In a particle filtering algorithm, a posteriori PDF
p(N0:t|X0:t) is approximated by Monte Carlo sampling as fol-
lows:

p(N0:t|X0:t) �
JX

j=1

w
(j)
t δ

“
N0:t − N

(j)
0:t

”
, (6)

where j, J , w
(j)
t , and δ(·) denote sample index, the number of

samples, weight of sample j at time t (
PJ

j=1 w
(j)
t = 1), and a

Dirac delta function, respectively.
When direct sampling from p(N0:t|X0:t) is intractable, we

can draw the samples from the other distribution q(N0:t|X0:t),
which is related to p(N0:t|X0:t) and called an importance density.
Therefore, when samples N

(j)
0:t were drawn from the importance

density q(N
(j)
0:t |X0:t), sample weight w

(j)
t is defined as

w
(j)
t ∝ p(N

(j)
0:t |X0:t)

q(N
(j)
0:t |X0:t)

, (7)

where q(N
(j)
0:t |X0:t) ∝ p(N

(j)
0:t |X0:t).

By applying a Bayesian rule to Eq. (5), a posteriori PDF with a
recursive formula for obtaining p(N0:t|X0:t) from p(N0:t−1|X0:t−1)
is given by

p(N0:t|X0:t) =
p(Nt|Nt−1)p(Xt|Nt)

p(Xt|X0:t−1)
p(N0:t−1|X0:t−1)

∝ p(Nt|Nt−1)p(Xt|Nt)p(N0:t−1|X0:t−1). (8)

Furthermore, if importance density q(N0:t|X0:t) has the follow-
ing recursive formula,

q(N0:t|X0:t) = q(Nt|N0:t−1,X0:t)q(N0:t−1|X0:t−1), (9)

sample weight w
(j)
t can be represented as a following recursive

formula by substituting Eq. (9) and Eq. (8) into Eq. (7):

w
(j)
t ∝ w

(j)
t−1

p(N
(j)
t |N(j)

t−1)p(Xt|N(j)
t )

q(N
(j)
t |N(j)

0:t−1,X0:t)
. (10)

In Eq. (10), we assumed that p(N
(j)
t |N(j)

t−1) = q(N
(j)
t |N(j)

0:t−1,X0:t).
Therefore, it is simplified as

w
(j)
t ∝ w

(j)
t−1p(Xt|N(j)

t ), (11)

where

p(Xt|N(j)
t ) = N

„
Xt; f

„
S

(j)

s
(j)
t ,k

(j)
t ,t

,N
(j)
t

«
,Σ

S,s
(j)
t ,k

(j)
t

«
.

(12)
Generally, the above particle filtering algorithm is called a se-

quential importance sampling (SIS) particle filter [8].

2.3. Parameter updating by extended Kalman filter
To update the noise samples N

(j)
t from previous samples N

(j)
t−1, an

extended Kalman filter, which is derived by the dynamical system
defined by Eqs. (1) and (3), is applied. The extended Kalman filter-
based updating formula is given by

N
(j)

t|t−1 = N̂
(j)
t−1 (13)

Σ
(j)

Nt|t−1 = Σ
(j)
Nt−1 + ΣW (14)

K
(j)
t = Σ

(j)

Nt|t−1F
(j)T
t

h
F

(j)
t Σ

(j)

Nt|t−1F
(j)T
t + Σ

S,s
(j)
t ,k

(j)
t

i−1

(15)

F
(j)
t = ∂f

„
S

(j)

s
(j)
t ,k

(j)
t ,t

,N
(j)

t|t−1

« .
∂N

(j)

t|t−1 (16)

N̂
(j)
t = N

(j)

t|t−1 +K
(j)
t

„
Xt − f

„
S

(j)

s
(j)
t ,k

(j)
t ,t

,N
(j)

t|t−1

««
(17)

Σ
(j)
Nt−1 = Σ

(j)

Nt|t−1 − K
(j)
t F

(j)
t Σ

(j)

Nt|t−1, (18)

where subscript t|t−1 denotes the predicted parameter from t−1-
th frame and S

(j)

s
(j)
t ,k

(j)
t ,t

denotes the clean speech samples drawn

from clean speech HMM as follows:

S
(j)

s
(j)
t ,k

(j)
t ,t

∼ N
“
µ
S,s

(j)
t ,k

(j)
t

,Σ
S,s

(j)
t ,k

(j)
t

”
(19)

s
(j)
t ∼ a

S,s
(j)
t−1st

, k
(j)
t ∼ P

S,s
(j)
t ,kt

(20)

where µ
S,s

(j)
t ,k

(j)
t

, a
S,s

(j)
t−1st

, and P
S,s

(j)
t ,kt

denote the mean vec-

tor of k
(j)
t -th Gaussian distribution contained in state s

(j)
t of clean

speech HMM, state transition probability from s
(j)
t−1 to st, and

mixture weight, respectively. Initial noise samples are drawn as

N
(j)
0 ∼ N (µN,ΣN) , Σ

(j)
N0 = ΣN, (21)

where µN and ΣN denote mean vector and diagonal covariance
matrix of initial noise distribution, respectively. µN and ΣN are
estimated by using the first 10 frames of observations.

2.4. Residual resampling (selection) step
In practice, after the sampling step described in Section 2.2, the
weights of all but several samples may become insignificant. Given
the fixed number of samples, this will degenerate the estimation. A
selection step by residual resampling [8] is adopted after the sam-
pling step. Figure 1 illustrates the summary of residual resampling
step.
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The method avoids degeneracy by discarding those samples
with insignificant weights, and to keep the number of samples con-
stant, samples with significant weights are duplicated. Accord-
ingly, the weights after the selection step are also proportionally
redistributed.

Sampling
t
Selection

Sampling
t+1

Selection

Noise distribution

: Sample with large weight
: Sample with small weight

Fig. 1. Summary of residual resampling step

2.5. Markov chain Monte Carlo step
After the resampling step at frame t, these J samples are dis-
tributed approximately according to Eq. (6). However, the discrete
nature of the approximation can skew the importance weights dis-
tribution, where in extreme cases all the samples have the same
value.

A Metropolis-Hastings (MH) sampling [11] step is introduced
in each sample where the step involves sampling a candidate given
the current state according to proposal importance distribution. To
simplify the calculation, we assume that the importance distribu-
tion is symmetric. After some mathematical manipulation, it is
shown that an acceptance possibility is given by

ν = min
n

1, w
∗(j)
t /w

(j)
t

o
, (22)

where w
∗(j)
t denotes sample weight computed by MH sampling

step. The state transition by MH sampling is derived as:

N
(j)
t =

(
N

∗(j)
t if u ≤ ν (accept state transition)

N
(j)
t otherwise (reject state transition)

,

(23)
where N

∗(j)
t denotes samples drawn by MH sampling step and

u ∼ U[0,1]. U[0,1] is the uniform distribution between 0 and 1.

2.6. MMSE estimation of clean speech
We estimated clean speech St by using MMSE estimation [2].
Clean speech estimates with one noise sample are given by the
following MMSE formula:

Ŝ
(j)
t = Xt−

KX
k=1

P (k|Xt, (j)) log
“
I + exp

“
N

(j)
t − µ

S,s
(j)
t ,k

””
,

(24)
where K denotes the number of mixtures and P (k|Xt, (j)) is
given by

P (k|Xt, (j)) =

P
S,s

(j)
t ,k

N
„
Xt, µX

(j)
k,t

,Σ
X

(j)
k,t

«
PK

k′=1 P
S,s

(j)
t ,k′N

„
Xt, µX

(j)
k′,t

,Σ
X

(j)
k′,t

« ,

(25)
where µ

X
(j)
k,t

and Σ
X

(j)
k,t

denote mean vector and diagonal covari-

ance matrix of Xt which are compensated by first order VTS-
based approach [4] with parameters µ

S,s
(j)
t ,k

, Σ
S,s

(j)
t ,k

, N(j)
t and

Σ
(j)
Nt.

Finally, a clean speech estimate Ŝt is given by

Ŝt =

JX
j=1

w
(j)
t Ŝ

(j)
t . (26)

3. EXPERIMENTS
3.1. Experimental setup
Speaker independent Japanese connected digits recognition were
carried out by using HTK ver.3.2. 8440 connected digits utter-
ances spoken by 110 speakers and 1001 connected digits utter-
ances spoken by 104 speakers were used for training and testing.
These materials were taken from AURORA-2J [10]. Factory and
road working noises were artificially added to clean testing data
with various SNRs from 0dB to 20dB.

The feature parameters used in this evaluation were composed
of 39 MFCCs with 13 MFCCs (with zero-th MFCC) and their first
and second order derivatives. A zero-th MFCC was used as en-
ergy coefficient instead of a standard Log-energy. At the feature
extraction stage, CMS was applied to each sentence.

AURORA-2J standard whole word HMMs (16 states, 20 mix-
ture distributions per state) were used for speech recognition. We
also trained the clean speech HMM for noise compensation by us-
ing clean training data of AURORA-2J with several states and mix-
ture distributions: namely, 1 state model (512 mixtures per state), 4
states model (128 mixtures per state), 8 states model (64 mixtures
per state), and 16 states model (32 mixtures per state). The num-
ber of distributions contained in an HMM were 512 for all HMMs.
The feature parameters were 23th order log output energy of Mel-
filter bank. In particle filter-based noise estimation, the number of
samples was set to 20, and the covariance matrix of driving noise
Wt was set to ΣW = diag(0.01).

3.2. Experimental results
Figure 2 illustrates the estimation results of factory noise. In the
figure, “True noise,” “Moving average,” and “Particle filter” in-
dicate the true noise sequence of the first log output energy of a
Mel-filter bank, the sequence of “True noise” smoothed by mov-
ing average with 20 frame intervals, and, noise sequence estimated
by our proposed method with a 16 state HMM, respectively. The
processing performance of the proposed method with a 16 state
HMM was about 0.8 times that of real time by a 3.2GHz Intel
Xeon processor.

Fig. 2. Estimation results of factory noise by 16 states HMM

Figure 2 shows that the estimated noise sequence is close to
that of “Moving average”. However, the estimation accuracy was
insufficient when abrupt changes occurred. Moreover, compared
with “True noise”, estimation error was large throughout all noise
sequences. This is caused by inaccurate modeling of dynamical
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Table 1. Word accuracy of factory noise environments (%)
HTK ETSI Advanced MMSE (Stationary Particle filter Upper limitSNR

baseline front-end noise compensation) 1 state 4 states 8 states 16 states (True noise)
20 dB 93.61 92.88 96.41 96.04 95.03 95.82 96.13 98.46
15 dB 81.12 86.86 88.92 89.59 87.38 88.82 90.02 94.87
10 dB 54.81 76.73 74.27 75.41 72.95 73.90 75.87 85.11
5 dB 29.47 53.18 50.94 51.98 51.30 50.54 54.50 63.13
0 dB 18.73 23.15 24.72 26.19 28.55 26.50 28.92 37.06
Average 55.55 66.56 67.05 67.84 67.04 67.12 69.09 75.73

Table 2. Word accuracy of road working noise environments (%)
HTK ETSI Advanced MMSE (Stationary Particle filter Upper limitSNR

baseline front-end noise compensation) 1 state 4 states 8 states 16 states (True noise)
20 dB 96.68 96.90 99.20 98.34 97.85 98.46 98.34 99.29
15 dB 89.93 94.81 97.61 97.08 95.21 96.07 95.61 98.16
10 dB 70.28 89.81 91.77 92.39 88.79 90.33 89.84 94.87
5 dB 38.81 76.02 71.57 73.04 72.24 74.21 75.28 82.69
0 dB 22.29 48.48 43.60 43.44 48.88 46.88 49.43 54.51
Average 63.60 81.20 80.75 80.86 80.59 81.19 81.70 85.90

system for noise. We employed a random walk process repre-
sented by Eq. (3) for a state transition process. However, a random
walk process does not ensure the accurate state transition of noise.
To reduce estimation error of noise sequences, it is necessary to
investigate an accurate modeling method of noise dynamics.

Tables 1 and 2 indicate the speech recognition results for word
accuracy. In the tables, “HTK Baseline,” “ETSI Advanced front-
end,” “MMSE,” and “Particle filter” indicate the recognition re-
sults without noise compensation, results by ETSI Advanced front-
end [3], results by MMSE estimation with stationary noise com-
pensation and 1 state model, and results by MMSE estimation with
particle filter (non-stationary noise compensation), respectively.
“Upper limit” indicates the results by MMSE estimation with true
noise sequence and 1 state model.

Tables 1 and 2 show that the proposed method with a 16 state
model exhibits the best average word accuracy. However, the per-
formance improvement from “MMSE” was small. To improve
word accuracy, it is necessary to estimate noise sequences as ac-
curately as possible, since the potential of MMSE with true noise
sequence is large.

As we can see from the tables, to improve the accuracy of
noise estimation, we have to increase the number of states of clean
speech HMMs. These results suggest that noise estimation accu-
racy by the proposed method depends not only on noise dynam-
ics but also clean speech dynamics, because accurate clean speech
samples are required to update the noise samples and compute the
sample weight as shown in Sections 2.2 and 2.3. The reliabili-
ties of clean speech samples depend on the modeling accuracy of
clean speech HMMs. If a clean speech HMM has a large num-
ber of states, the reliabilities of clean speech samples will increase
because an HMM with a large number of states can model the
detailed dynamics of clean speech. From these facts, we have to
consider the optimal modeling of clean speech HMMs for particle
filter-based noise estimation.

4. CONCLUSION
A particle filter-based non-stationary noise estimation method has
been presented in this paper. In the evaluation results, the proposed
method showed improvements of speech recognition accuracy in
non-stationary noise environments. Furthermore, it showed that
accurate dynamics modeling for both noise and clean speech is

an important factor for particle filter-based noise estimation. In
the future, we are planning to investigate the accurate modeling of
noise dynamics and the optimal modeling of clean speech HMM
for particle filter-based noise estimation.
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