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ABSTRACT
Recently, entropy measures at different stages of recogni-
tion have been used in automatic speech recognition (ASR)
task. In a recent paper, we proposed that formant positions
of a spectrum can be captured by multi-resolution spectral
entropy feature. In this paper, we suggest modifications to
the spectral entropy feature extraction approach and com-
pute entropy contribution from each sub-band to the total
entropy of the normalized spectrum. Further, we explore the
ideas of overlapping sub-bands and the time derivatives of
the spectral entropy feature. The modified feature is robust
to additive wide-band noise and performs well at low SNRs.
In the last, in the frame work of TANDEM, we show that
the system using combined entropy and PLP features works
better than the baseline PLP feature for additive wide-band
noise at different SNRs.

1. INTRODUCTION

Acoustic modelling in automatic speech recognition (ASR)
is generally accomplished by cepstral features obtained
from short time Fourier transform (STFT) of speech signal.
The most common ones among existing cepstral features are
Mel-frequency cepstral coefficient (MFCC) [1], perceptual
linear prediction (PLP) [2] and RASTA [3] based cepstral
coefficients. While cepstral features are fairly good repre-
sentation, they capture the absolute energy response of the
spectrum. Further, we are not sure that all the relevant infor-
mation present in the STFT spectrum is captured by them.

We followed a completely different approach while
proposing our multi-resolution spectral entropy feature [4].
Instead of transforming the spectral information into cep-
stral domain, we suggested computing entropy from the
sub-bands of spectrum and trying to locate the spectral
peaks of the spectrum which are supposed to be more ro-
bust to noise. In [4], we showed that the proposed multi-
resolution spectral entropy feature is not very competitive
when compared to the state-of-the-art PLP cepstral features,
but improves the robustness of the ASR system when ap-
pended to the PLP features.
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In this paper, we suggest improvements to the feature
computation and show that the modified multi-resolution
spectral entropy feature along with its time derivatives is
noise robust and performs better than the PLP feature under
high noise conditions. The spectral entropy feature when
used along with PLP feature performs better than the base-
line PLP system. Further, when context dependent phone
modelling and state tying are used on top of hidden Markov
model (HMM)/artificial neural network (ANN) hybrid sys-
tem, as in the case of Tandem [5] approach, the performance
of the feature improves significantly, establishing the use-
fulness of the new feature.

The remaining paper is organized as follows: In the next
section we introduce the basic multi-resolution spectral en-
tropy feature and the improvements suggested over the ba-
sic feature. In the same section we explain the Tandem ap-
proach. In Section 3, the database used and the experimen-
tal setup is discussed. Section 4 contains the comparative
results followed by conclusions in Section 5.

2. MULTI-RESOLUTION SPECTRAL ENTROPY
FEATURE

2.1. Motivation

Entropy can be used to capture the “peakiness” of a prob-
ability mass function (PMF). A PMF with sharp peak will
have low entropy while a PMF with flat distribution will
have high entropy. In a recent publication [6], spectral en-
tropy rate, also known as Wiener entropy, has been used to
measure the spectral flatness and explored as one of the fea-
ture for detecting stop consonants in continuous speech.

In case of STFT spectra of speech, we observe distinct
peaks and the position of these peaks in the spectra are de-
pendent on the phoneme under consideration. The impor-
tance of formants is well know and in [7] the author has
tried to use the location of spectral peaks as an additional
feature in ASR. On the similar lines, the central idea in [4]
while using multi-resolution spectral entropy as a feature
was to capture the peaks of the spectrum and their location.
To compute entropy of a spectrum we converted the spec-
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trum into a PMF like function by normalizing it.
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where �� is the energy of ��� frequency component of the
spectrum, � � ���� � � � � �� � is the PMF of the spectrum
and � is the number of points in the spectrum (order of
STFT). Entropy for each frame was computed from � by:
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Fig. 1(b) shows the entropy contour computed on the
full-band spectrum for the clean speech. We observe that
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Fig. 1. Entropy computed from the full-band spectrum. (a)
Clean speech wave form, (b) Entropy contour for clean
speech, (c) Speech corrupted with factory noise at 6 dB
SNR, and (d) Entropy contour for speech corrupted with
factory noise at 6 dB SNR.

entropy computed on full-band can be used as an estimate
for speech/silence detection. In presence of noise, the for-
mants are less affected as compared to the other parts of the
spectrum. So we can assume that entropy of the spectrum
if used for speech/silence detection will be robust to noise,
and indeed it is true as shown in Fig. 1(d). Though the dy-
namic range of the entropy contour is squeezed in presence
of noise, it retains its discriminatory property. In [8], au-
thors successfully used entropy for end point detection of
speech in noisy environments.

2.2. Multi-band/Multi-resolution entropy
Realizing that full-band entropy can capture only the
gross peakiness of the spectrum but not the location of
the formants, in [4] we suggested the idea of multi-
resolution/multi-band entropy feature to capture the loca-
tion of the formants. To extract multi-band entropy features,

we divided the full-band spectrum into � non-overlapping
sub-bands of equal size. Entropy was computed for each
sub-band and we obtained one entropy value for each sub-
band. These sub-band entropy values indicate the presence
or absence of formants in that sub-band.

2.3. Modifications
In [4] we advised that the way full-band spectrum is con-
verted into a PMF, each sub-band spectrum should be con-
verted into a sub-band PMF and entropy be computed for
each sub-band PMF. Converting each sub-band into a PMF
enhances the false local peaks as the normalization was
done only for that sub-band. This false relative peak en-
hancement gives us low entropy values even for peaks
which were smaller in the full-band but were observed as
high relative peaks in a normalized sub-band.

To overcome this problem, we explored the option of
not converting each sub-band into a PMF separately. In-
stead the full-band was converted into a PMF and then di-
vided into sub-bands to obtain entropy feature from each
sub-band. This ensured that the peaks retained their relative
strength in each sub-band. This is equivalent to computing
the entropy contribution of each sub-band to the full-band
entropy. The remaining process of feature extraction was
kept the same and is explained in the next paragraph.

When � � �, we work with the full-band spectrum and
obtain one entropy value. When there are two sub-bands
(� � �) we obtain two entropy values, one from each sub-
band, and so on. In our experiments we changed the pa-
rameter � from � to �� and obtained the entropy values
from each sub-bands. Instead of working with 15 point PLP
spectrum as reported in [4], in this paper we worked with
��� point STFT spectrum to have better frequency resolu-
tion. We haven’t tried the possibility of smoothing the STFT
spectrum to remove the pitch affects in this paper.

In this paper, we also explored the idea of overlapping
sub-bands of unequal size. To accomplish this, we divided
the full-band into �	 overlapping sub-bands defined by Mel-
scale [1] and computed entropy from each sub-band. More-
over, in order to incorporate the temporal information, we
also used the first and second order time derivatives of the
multi-band entropy feature in the system.

The above listed modifications, namely, entropy contri-
bution from each sub-band, overlapping sub-bands and time
derivatives, impart robustness to the spectral entropy fea-
ture.

2.4. Entropy feature in Tandem framework
The simplicity of the hidden Markov model
(HMM)/artificial neural network (ANN) hybrid sys-
tem is that the features do not need special processing like
decorrelation for developing a system as an ANN can learn
the correlation among the features on its own. Moreover,
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an HMM/ANN system does discriminatory training and
specially the output of the hybrid system is well suited
for multi-stream combination. In contrast, though hidden
Markov model (HMM)/Gaussian mixture model (GMM)
system does likelihood based training, the advantage of
HMM/GMM system is that modelling techniques like
context dependent phone modelling and state-tying can be
easily implemented in it.

In Tandem [5] approach, where the initial discrimi-
natory modelling is done with the help of an ANN and
then the output of the ANN is modelled with the help of
HMM/GMM system, the advantages of both the systems
can be exploited. In our third set of experiments, we used
Tandem system to ascertain the importance of entropy fea-
ture when a) Used stand alone and b) Entropy feature is
appended to the PLP cepstral features.

3. EXPERIMENTAL SETUP

In the experiments reported in this paper, Numbers95 data-
base of US English connected digits telephone speech [9]
is used. There are 30 words in the database represented by
27 phonemes. Training is performed on clean speech ut-
terances and testing data, which is different from the train-
ing data, is either clean or corrupted by factory noise from
Noisex92 database [10] added at different signal-to-noise-
ratios (SNRs) to Numbers95 database. There were 3330
utterances for training and 2250 utterances were used for
testing the system.

We have used HMM/ANN hybrid system [11] for the
first two set of experiments. The ANNs used were a sin-
gle layer multi-layer perceptron (MLP) and the number of
units in the hidden layer of an MLP were proportional to
the dimension of the input feature vector stream fed to that
MLP. The baseline PLP [3] feature vectors used in our sys-
tem were: 13-dimensional cepstral coefficients appended
with their first and second order time derivatives. The in-
put layer was fed by 9 consecutive data frames. The HMM
used for decoding had fixed state transition probabilities of
0.5. Each phoneme had a 1 state monophone model for
which emission likelihoods were supplied as scaled posteri-
ors [11]. The minimum duration for each phoneme is mod-
elled by forcing 1 to 3 repetitions of the same state for each
phoneme.

The new multi-band spectral entropy feature and its first
and second order time derivatives were used to develop
stand alone spectral entropy feature based hybrid and Tan-
dem systems. Also, we ran experiments appending the en-
tropy feature to the PLP feature in Tandem system.

The Tandem system was implemented with the basic hy-
brid system discussed above plus HMM/GMM system in
the second stage. The HMM/GMM part of Tandem consists
of 80 context dependent phones with 3 left-to-right states

per context dependent phone and 12 GMM per state to es-
timate emission probabilities within each state. We used
HTK to train the system. The features to the HMM/GMM
system were the linear output of the hybrid system, after be-
ing decorrelated with the help of principal component anal-
ysis (PCA) and were 27-dimensional. The implementation
details of the Tandem system can be found in literature [5]
and have not been described here.

4. RESULTS

The results for HMM/ANN hybrid system, in terms of
word-error-rates (WERs), of the entropy features alone are
shown in Table 1. For example, ’2-bands Entropy’ feature

Word-Error-Rates for spectral entropy features
Feature WER
Full-band Entropy 91.6%
2-bands Entropy 74.4%
3-bands Entropy 59.5%
4-bands Entropy 42.7%
8-bands Entropy 24.3%
16-bands Entropy 18.6%
24-bands Entropy 16.2%
32-bands Entropy 15.1%
24 Mel-bands Entropy 15.7%

Table 1. Word-Error-Rates (WERs) for clean speech
for multi-band spectral entropy features in hybrid sys-
tem for different number of sub-bands. Only Mel-
bands are overlapping. Rest of the sub-bands are non-
overlapping.

is obtained by dividing the normalized full-band into two
equal sub-bands and obtaining one entropy value from each
sub-band. The two entropy values thus obtained are ap-
pended to form a 2-dimensional entropy feature vector used
for training and testing the system. Entropy feature vectors
are obtained for up to 32 equal-sized non-overlapping sub-
bands. The results are shown in Table 1. To consider over-
lapping sub-bands, we used the 24 overlapping sub-bands
of Mel-scale and the result are reported in the same table.
WER results indicate as the number of sub-bands are in-
creased, the performance improves. So going from full-
band entropy feature to multi-band entropy feature pays rich
dividends.

To study the multi-band spectral entropy feature further,
we obtained its first and second order time derivatives and
appended to the original feature. To observe the perfor-
mance in presence of noise, we added factory noise from
Noisex92 database at different SNRs to the speech signal.
We observe (Table 2) that appending the time derivatives of
the entropy feature to the entropy feature once again gives
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an improvement in the performance of the system. The

WERs: Spectral entropy and its time derivatives

Feature clean SNR12 SNR6 SNR0
16-bands 15.5% 22.0% 31.9% 53.2%
24-bands 14.0% 20.2% 29.3% 50.1%
32-bands 14.0% 20.4% 28.8% 47.1%
24 Mel-bands 12.8% 18.3% 27.0% 45.1%
PLP 10.0% 17.7% 29.6% 51.0%

Table 2. WERs for entropy features with its first and sec-
ond order time derivatives appended in hybrid system
for noisy speech.Only Mel-bands are overlapping.

overlapping Mel-scale sub-bands give better performance
as compared to non-overlapping sub-bands. Also, chang-
ing the number of parameters in the MLP didn’t change the
performance of the individual features considerably.

In Table 3 we have shown the results in terms of WERs
for Tandem system. The results for entropy feature are

Feature Clean SNR12 SNR6 SNR0
PLP ����� 10.3% 20.1% ������

24-Mel 7.1% 12.1% 19.9% 37.7%
PLP + 24-Mel 4.2%� 9.7% 18.5% 41.1%�

Table 3. WERs for PLP feature, 24 Mel-band entropy
feature and its time derivaties (24-Mel), and the two fea-
tures appended (PLP + 24-Mel), in TANDEM system un-
der different noise conditions. � indicates that the differ-
ence in performance is not significant.

shown only for the best case, that is for overlapping 24 Mel-
bands. The combined feature performs better than the base-
line under all conditions. When entropy feature is appended
to the PLP feature, better improvements are observed in
cases when difference between the performance of PLP and
spectral entropy features is not high (SNR12 and SNR6).
When the difference between the performance of the PLP
and entropy features is high, the gain in performance by ap-
pending the two features is not significant.

5. DISCUSSION AND CONCLUSION

In search of new features having complementary informa-
tion, this paper investigated the use of entropy of the spec-
trum as an additional feature. It has been shown that entropy
of the full-band spectrum can be used as an estimate for
speech/silence detection. In this paper, we suggested divid-
ing the normalized spectrum into sub-bands and obtaining
contribution to entropy from each sub-band and using that
as a feature for ASR. The ideas of overlapping sub-bands

and the time derivatives being appended to the feature im-
prove the performance further, specially at low SNRs. Im-
proved performance is obtained when multi-band entropy
feature is appended to the usual PLP cepstral features under
all conditions.

6. ACKNOWLEDGEMENTS

We wish to thank Prof. Hynek Hermansky for his useful sugges-
tions. The authors want to thank the Swiss National Science Foun-
dation for supporting this work through the National Centre of
Competence in Research (NCCR) on ”Interactive Multimodal In-
formation Management (IM2)”, as well as DARPA through the
EARS (Effective, Affordable, Reusable Speech-to-Text) project.

7. REFERENCES

[1] S. B. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in contin-
uously spoken sentences,” pp. 357–366, 1980.

[2] Hynek Hermansky, “Perceptual linear predictive (PLP) anal-
ysis of speech,” J. Acoust. Soc. Amer., vol. 87, no. 4, pp.
1738–1752, 1990.

[3] Hynek Hermansky and Nelson Morgan, “RASTA processing
of speech,” IEEE Trans. Speech, Audio Processing, vol. 2,
no. 4, pp. 578–589, 1994.

[4] Hemant Misra, Shajith Ikbal, Hervé Bourlard, and Hynek
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