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ABSTRACT 

In this paper we investigate the relative noise robustness between 
dynamic and static spectral features, by using two speaker 
independent, continuous digit databases in English (Aurora2) 
and Cantonese (CUDigit). It is found that dynamic cepstrum is 
more robust to additive noise than its static counterpart. The 
results are consistent across different types of noise and under 
various SNRs. Optimal exponential weights for exploiting 
unequal noise robustness of the two features are discriminatively 
trained in a development set. When tested under various noise 
conditions, the optimal weights yielded relative word error rate 
reductions of 36.6% and 41.9% for Aurora2 and CUDigit, 
respectively. The proposed weighting is attractive for many ASR 
applications in noise because (1) no noise estimation for feature 
compensation; (2) no adaptation of clean HMMs to a noisy 
environment; and (3) only a trivial change in the decoding 
process by weighting log likelihoods of static and dynamic 
components separately. 

1. INTRODUCTION 

Automatic speech recognition (ASR) has achieved a high 
performance in controlled, laboratory environments where 
background noise and channel variation are rather benign. 
However, in many real world applications, ASR performance 
degrades rapidly when there is a substantial mismatch between 
models trained in a clean environment and noisy test conditions. 
The most direct way to reduce this mismatch is to train or to 
adapt the speech recognizer by using condition-specific, noisy 
data. However, since there are just too many different kinds of 
noise and operating SNRs can vary from one environment to the 
next, this approach is virtually infeasible. We need other more 
practical approaches to noisy speech recognition. 

By focusing on the three modules in a Hidden Markov Model 
(HMM) based ASR system: acoustic feature front-end, acoustic 
and language models and pattern matching decoder, we can deal 
with the problems of ASR in noise with different strategies. For 
example, 1) finding front-end acoustic features which are more 
invariant or insensitive to noise interference or compensating 
features to equalize the noise effect; 2) adapting acoustic models 
to make them more resistant to noise distortions; 3) weighting 
features in decoding to exploit their possible unequal robustness 
to noise. In this study we concentrate on characterizing front-end 

features by quantifying their relative robustness to noise and 
exploiting this unequal robustness by applying different 
weightings to the corresponding likelihood components in 
decoding. Only HMMs trained in clean environments are used 
exclusively in all experiments in this study. 

Dynamic cepstral features can help static features to characterize 
the speech trajectory on its time varying rate. It has been shown 
that such a representation yields higher speech and speaker 
recognition performance than static cepstra only [1-2]. However, 
not too many quantitative studies have been done to examine the 
robustness of static and dynamic features for ASR in noise [3]. 
In this paper we try to quantify the robustness of static and 
dynamic features under different types of noise and variable 
SNRs. Furthermore, based on the findings we design a simple 
but effective noise robust recognizer by weighting exponentially 
the likelihoods of static and dynamic features unevenly in 
decoding, motivated partially by the approach in [4] where only 
clean signals were considered. A discriminative training 
procedure is proposed to train the weights automatically using a 
small development set. The approach was evaluated on two 
connected digit databases, one in English (Aurora2) [5] and the 
other in Cantonese (CUDigit) [6].  

2. NOISE ROBUSTNESS ANALYSIS 

2.1 Recognition with Only Static or Dynamic Features  

To investigate the robustness of static and dynamic features to 
noise in recognition, we build two separate HMMs, based upon 
static-only and dynamic-only cepstral features, and test them in 
various types of noise digitally added to clean speech at different 
SNRs, using the Aurora2 database. 

The performance of digit accuracy is shown in Fig.1 where three 
curves, labeled as “baseline”, “dynamic-only”, and “static-only”, 
are compared. In clean condition, the baseline system of the 
augmented static and dynamic features performs the best, better 
than either the static-only or the dynamic-only system, as 
expected. In additive noise, dynamic-only system starts to 
outperform the static-only one and the performance gap enlarges 
with decreasing SNRs till the noise level becomes too high. In 
babble and car noises, dynamic features even outperform the full 
features.  
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Fig. 1  Digit accuracy (%) of the baseline (full features), 
dynamic-only  and static-only HMMs (Aurora2) 

2.2 Static and Dynamic Cepstral Distances between 
Clean and Noisy Speech 

For a given sequence of noisy speech observation, 

1 2,( , ..., ) 'T=Y y y y , the output likelihood is:  

11
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where we use a single Gaussian pdf to simplify our analysis. For 
an HMM of multi-mixture of Gaussians we can follow the same 
but somewhat more complicated analysis. The mismatch 
between clean and noisy conditions lies mainly on the exponent 
term which can be re-written as:  
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                                   (2) 
where ty  and tx  are the corresponding noisy and clean speech 

observations;  jµ  and j , corresponding mean and  covariance 

of the clean HMM at state j.  
Since the expected value of the second term is zero, the 
difference of likelihood between noisy and clean speech is just 

the first term, 1( )' ( )t t j t t
−− −y x y x , which can be viewed as a 

weighted cepstral distance normalized by the variance of the 
clean model. We thus define a cepstral distance to measure this 
mismatch as: 

1[( ) ' ( )]t t t tCD E −= − −xy x y x                          (3) 

where the diagonal covariance of the utterance, x , is used to 

approximate the diagonal covariance, j , in the clean speech 

model; [ ]E ⋅  denotes the time average over the whole utterance.  
In the following analysis, we select test set A in Aurora2 
database as the analysis data set. The clean speech data are 
digitally contaminated by subway, babble, car, and exhibition 
noises at SNRs from 5dB to 20dB, incrementing at a step of 5dB. 
We computed the weighted distances between clean and noisy 
speech for both the static and the dynamic features, respectively: 

1( ) ( ) '( ) ( )d d d d d
t t t tCD d E −= − −xy x y x                        (4) 

1( ) ( ) '( ) ( )s s s s s
t t t tCD s E −= − −xy x y x                        (5) 

where the superscripts d and s denote the dynamic  and the static 
features.  
Fig. 2 depicts the scatter diagrams of dynamic distance (between 
clean and noisy dynamic cepstra) vs. its static counterpart. Four 
diagrams are shown for babble noise at SNRs of 5, 10, 15, and 
20dBs. Scatter diagrams of other noises follow similar patterns 
but not shown here. In each scatter plot, the cepstral distance 
(between clean and noisy speech at a specified SNR) of static 
feature and that of dynamic feature form a 2-dimensional point 
for each utterance. The diagonal line in each plot represents a 
trace where the two distances, dynamic and static, are equal. 
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Fig. 2  Scatter diagrams of dynamic cepstral distance vs. static 
cepstral distance (variance normalized) in babble noise 

Two observations can be made on the figure: 
(1) With decreasing SNRs, the points move away from the origin 
when both cepstral features are mismatched with their clean 
counterparts. Or both distances are larger for increasingly 
mismatched conditions at lower SNRs. 
(2) For all types of noise,  majority points fall below the 
diagonal line. In other words, the dynamic cepstral distance 
between  noisy and clean features is smaller than its static 
counterpart, after variance normalization. It indicates that the 
dynamic features are more resilient to noise than the static 
features, hence better recognition performance in noise. 

3. EXPONENTIAL WEIGHTINGS IN DECODING 

3.1. Exponential Weightings 
Based on the findings in the previous section, we propose to 
weight the log likelihoods of static and dynamic features 
differently in decoding to exploit their uneven noise robustness. 
Assuming the dynamic and static features are mutually 
independent (as implied by the diagonal covariance), the output 
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likelihood of an observation can be split into two separate 
corresponding terms, d and s,  as:  

1

( ) exp{log[ ( ; , )] log[ ( ; , )]}
jk

K
d d d s s s

j t jk t jk t jk jk
k

b c N N
=

= +o o µ o µ (6) 

where k is the k-th mixture index; jkc , the  mixture weight. 

The acoustic likelihood components can be computed with 
different exponential weightings as:  

1

( ) exp{ log[ ( ; , )] log[ ( ; , )]}
K

d d d s s s
j t jk t jk jk t jk jk

k

b c N Nα β
=

= +o o µ o µ

                                                                                        (7) 
where α  is the dynamic feature weight and β , the static feature 

weight, subject to a constraint of unity sum, 1α β+ = .

3.2 Recognition with Bracketed Weightings 

We tested our idea of exponential weights by bracketing the two 
weights at a step of 0.1 with the constraint of unity sum. The 
recognition performance obtained with bracketed weights is 
shown in Fig. 3, where recognition accuracy improves 
continuously with increasing dynamic feature weight and reaches 
the best performance at the largest weight, 0.9α = .
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Fig. 3  Recognition performance of word accuracy (%) using 
bracketed weightings (Aurora2) 

4. DISCRIMINATIVE WEIGHT TRAINING 

Encouraged by the results in the previous subsection, we decide 
to optimize the weight values. The log likelihood difference (lld)
between the recognized and the correct states is chosen as the 
objective function for optimization. For the u-th speech utterance 
of T observations, 

1 2
( , ,..., )

Tu u u u=O o o o , the lld [7-8] is: 

( ) ( ) ( )r l
u u ulld g g= −O O O                                 (8) 

where ( )r
ug O  is the log likelihood of the recognition result 

and ( )l
ug O , that of the correct (forced) alignment.  

The cost averaged over the whole training set of U utterances is: 

1

1
( )

U

u
u

LLD lld
U =

= O                                          (9) 

This cost is minimized by adjusting iteratively the dynamic 
weight, α , and the static weight, β  , via the steepest descent as:   
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and T , total number of frames of the utterance uO ; n, the 

iteration index;  and ε ,  an appropriate step size. 

5.  DATABASES AND EXPERIMENTAL RESULTS 

5.1 Databases and Experimental Setups 

Databases
Two speaker independent, continuous digit databases are used in 
this study, one in English (Aurora2) [5] and the other one in 
Cantonese (CUDigit) [6].  
Acoustic features
13 dimensional static MFCC (including log energy) vectors are 
computed in a frame of 25 msec, shifted every 10 msec.  The 
dynamic features, i.e. ∆MFCC, are derived from the static 
features, in a window of 7 successive frames. 
Clean speech models
Whole-word, digit HMMs are 16 (English) or 8 (Cantonese) left-
to-right states without skipping. Each state’s output pdf is a 
mixture of 3 Gaussians with diagonal covariance. There are a 
three-state "silence" and a single-state "short pause" models [5]. 

5.2 Condition Specific Weights on Aurora2 Database 

In Fig. 4 the recognition performance obtained by using the 
optimally trained weights is depicted together with that of the 
unweighted, baseline system. The exponentially weighted system 
yields a substantial improvement over the baseline system. 
Overall, a 36.6% relative WER reduction is obtained. 
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Fig. 4  Recognition performance using optimal weights (Aurora2) 
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5.2 Universal Weights on Aurora2 Database 

In the previous experiments, condition-specific weights were 
tested. However, condition-specific development data for weight 
training may not always be available. Also, we like to investigate  
the weight sensitivities to mismatched testing conditions. Here, 
universal weights, i.e., two weights only, were trained by using 
multi-style training data of different noises at various SNRs and 
tested under various noise conditions. Fig. 5 depicts the 
recognition performance of word accuracy (%) by using 
condition-specific and universal weights. We find that the two 
performance curves, which are virtually on top of each other in 
three out of four noise conditions, are always better than the 
baseline results. For the babble noise, the condition-specific 
weights show some advantages over the universal weights.  
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Fig. 5  Condition-specific vs. universal weight recognition 
performance (Aurora2) 

5.3 Evaluation on CUDigit Database 

The optimal weights were also tested on CUDigit, a connected 
Cantonese digit database [9-10]. Fig. 6 depicts the recognition 
digit accuracy of both weighted and baseline systems, tested on 
clean and digitally added noises. The relative WER improvement 
is 41.9%, averaged over all noise conditions.  
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Fig. 6  Weighted and baseline performance (CUDigit)

6. CONCLUSIONS 

In this paper we investigated the relative robustness of dynamic 
and static cepstral features for ASR in noise. The dynamic 
features were found to be more resilient to additive noise 
interference than their static counterpart. Optimal exponential 
weights for exploiting the unequal robustness of the two cepstral 
features were trained and tested on two continuous digit 
databases, Aurora2(English) and CUDigit(Cantonese). Relative 
error rate reductions of 36.6% and 41.9%, have been obtained 
over the baseline results, respectively. In our approach, the same 
clean HMM is used in the decoding process; hence no extra 
computation is needed.  The fact that there is no need to estimate 
the noise or to adapt clean HMMs makes this approach rather 
attractive for many ASR applications in noise.

ACKNOWLEDGMENT 

This research is supported by a grant from the Research Grants 
Council of the Hong Kong Special Administrative Region 
(Project No. CUHK4206/01E). C. Yang is supported by 
Research Studentship by a central allocation grant from 
Research Grants Council.  

REFERENCES 

[1] S. Furui, “Speaker-independent isolated word recognition using 
dynamic features of speech spectrum,” IEEE Trans. Acoust. Speech 
Signal Proc., vol.34, pp.52-59, Feb. 1986. 

[2] F. K. Soong and A. E. Rosenberg, “On the use of instantaneous and 
transitional spectral information in speaker recognition,” IEEE 
Trans. Acoust. Speech Signal Proc., vol. 36, pp.871–879, June 1988. 

[3] B. A. Hanson and T. H. Applebaum, “Robust speaker-independent 
word recognition using static, dynamic and acceleration features: 
experiments with Lombard and noisy speech,” Proc. ICASSP-1990,
pp.857-860. 

[4] J. Hernando, “Maximum likelihood weighting of dynamic speech 
features for CDHMM speech recognition,”   Proc. ICASSP-1997,
pp.1267-1270 

[5] H. G. Hirsch and D. Pearce, “The AURORA experimental 
framework for the performance evaluation of speech recognition 
systems under noisy conditions,” ISCA ITRW ASR2000, pp.181-188, 
Sept. 2000, Paris, France. 

[6] T. Lee, W. K. Lo, P. C. Ching and H. Meng, “Spoken language 
resources for Cantonese speech processing,” Speech Communication,
pp.327-342, vol.36, 2002. 

[7] J.-K. Chen and F. K. Soong, “An N-best candidates-based 
discriminative training for speech recognition applications,” IEEE 
Trans. Speech and Audio Proc., vol.2, pp.206–216, Jan.1994.  

[8] B.-H. Juang, W. Chou and C.-H. Lee, “Minimum classification 
error rate method for speech recognition,” IEEE Trans. Speech and 
Audio Proc., vol.5, pp.257–265, May 1997. 

[9] C. Yang, “On the robustness of static and dynamic spectral 
information for speech recognition in noise,” Ph. D Dissertation, 
The Chinese University of Hong Kong, in preparation. 

[10]C. Yang, F. K. Soong and T. Lee, “Noise robustness of dynamic and 
static features for continuous Cantonese digit recognition” 
submitted to ISCSLP 2004, Hong Kong.

I - 244

➡ ➠


