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ABSTRACT

This paper describes an algorithm for determining pitch period

markers in a continuous speech signal using prior knowledge of 
pitch values. The algorithm uses dynamic programming to
determine optimal markers from a set of probable markers. Local 
costs are assigned based on amplitudes of local peaks, and
transition costs are based on the closeness of peak spacings to the 
spacing predicted by the pitch period. In tests conducted with the 
Keele database, it was found that over 90% of pitch markers are 
within ±0.3ms of reference marks in the laryngograph signal

recorded with the Keele acoustic data, and over 96% of markers 
are within ±1 ms of reference markers. One of the features of this 
algorithm is tolerance to errors in the pitch track. The algorithm 
can tolerate errors in the pitch track of approximately -10% to
+60%, with very little degradation in performance. It also
generates =1% extraneous peaks.

1. INTRODUCTION

In this paper, an algorithm is described and experimental results 
reported for identifying fundamental frequency (pitch) markers
in a speech signal, given that pitch tracking has already been
performed. This work is motivated by the observation that even 
very accurate pitch-tracking algorithms are generally based on
some type of smoothing over time, such as that implicit in an

autocorrelation calculation of speech data several pitch cycles
long, and thus pitch tracks do not identify individual pitch cycles 
in the acoustic waveform. Since some work has shown that
speech recognition, especially under conditions of moderate
noise, can be improved by pitch-synchronous analysis, the
present work is intended to provide the detailed cycle-by-cycle
identification of pitch periods that would be needed for pitch
synchronous analysis. Other potential applications of the

markings of pitch period markers include analysis of jitter,
prosody in speech [1], text-to-speech synthesis [2, 3], analysis of 
voice quality and pitch synchronous speech analysis [4]. 

A number of pitch marking algorithms have been proposed 
in the literature, many of which primarily extract certain signal
attributes such as Glottal Closure Instants (GCIs), excitation
moments from LPC analysis, zero crossings, etc. These

algorithms have not proven to be sufficiently accurate [5], [2] for 
pitch synchronous analysis. To overcome the accuracy problem, 
another group of algorithms have been proposed which use
dynamic programming to combine multiple sources of
information ( [5], [1], [6] and [2, 3] ). The reported algorithms
using dynamic programming have improved accuracy for

identifying pitch markers but still are insufficient for many
desired applications. Recently, algorithms have been proposed
that combine dynamic programming with GCI detection [7] or
artificial neural networks [1] and have been successful in
identifying pitch markers accurately. The pitch marking
algorithm presented in this paper is another attempt to use
dynamic programming along with the pitch information of a

signal to identify pitch markers more accurately.

The algorithm presented for identification of pitch cycle
markers in the speech signal is based on combining information 
from the pitch track and peak locations in the acoustic signal.
The algorithm is presented in some detail in the third section of 
this paper. The algorithm was experimentally evaluated using the 
Keele database, using markers obtained from the laryngograph
signal as a reference. Although the pitch cycles are quite

apparent in the laryngograph signal, still some care in signal
processing is required to obtain the control markers. Error
measures were defined for evaluating the accuracy of the marker 
locations in the speech signal, and experimental results are
presented in section 4 of this paper.

The algorithm used for pitch tracking is the YAPT [8]
algorithm developed by Kasi and Zahorian (2002).
Summarizing briefly, the kernel processing in YAPT is the

normalized cross correlation (NCRSS), which has been found to 
be a reliable indicator of pitch even in the presence of rapidly
changing speech amplitudes. To improve the reliability of the
NCRSS, an approximate but robust pitch track is also computed 
from the low frequency spectrogram of both the original signal
and the absolute value signal. Multiple potential pitch candidates 
identified by the NCRSS are reduced to a single "lowest cost"
pitch candidate for each speech frame using dynamic

programming. Costs are based on peak amplitudes in the
NCRSS, continuity considerations, and the approximate pitch
track determined from the spectrogram. 

2. THE ALGORITHM

This section describes the algorithm developed in this work to
obtain pitch period markers on a cycle-by-cycle basis, based on 
prior knowledge of pitch values of the signal. The computed
pitch values are used to approximate the pitch period, which in
turn is used to determine a block and frame size for use in the
marking algorithm. In each block, the peaks are identified in the 
acoustic signal that are potential pitch cycle markers. These
peaks are grouped into frames and dynamic programming is used 
to determine those peaks whose locations appear to be the best

candidates as pitch period markers.
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A more detailed description of the algorithm consists of the

steps given below:
1. Block creation process.
2. Peak picking process.
3. Peak organization into frames.
4. Dynamic programming.
5. Post-processing of pitch markers.

A ‘block’ of the speech signal can contain any of the four 

types of signal:  unvoiced (u), unvoiced followed by voiced (u-
v), totally voiced (v), or voiced followed by unvoiced (v-u).  A 
fundamental assumption is made that blocks are short enough in 
time (typically about 5 pitch periods, or about 30-60 ms) that
normally at most one transition in voicing is made. Identification
of pitch periods in the case of (v) regions of speech is generally 
relatively easy and accurate, as compared to regions with
transitions between voiced and unvoiced intervals (u-v, v-u). The 
algorithm is used mainly to identify pitch cycles in the (v)

regions of speech, but does attempt to identify pitch period
makers in the voiced portions of (u-v, v-u) regions, and even
“examines” portions of the “u” regions for these cases.

2.1. Block creation process

For all regions (v, u-v, v-u), the size of a block is a fixed multiple 
(typically 5) of the average pitch value in the (v) region of the 
block, typically about 60ms long. This method insures that a
minimum of 3 complete pitch cycles are contained in the block.
If the end of the preceding block was also voiced, the block
begins at the location of the last pitch marker found in the
preceding block. For the case of u-v blocks, the pitch is
determined as the average value in the v region, the block

starting point is 2 pitch periods prior to the u-v transition. For the 
case of v-u regions,   the block is determined as for v regions, but 
the v-u transition point is noted for later use in processing.

2.2. Peak identification process

Identification of pitch cycles requires the use of landmarks that
will mark the beginning and the end of each pitch cycle.  In this 
algorithm, signal peaks are assumed to be those landmarks. A
peak is considered as a candidate if it is the largest peak within a 
window of width 1.0 nominal pitch periods wide, centered about 
the peak. An examination of many seconds of speech data
indicated that this process was able to identify nearly all pitch
period markers, and tended to minimize the extraneous markers 

found. A cost value was then associated with each peak. In
particular larger peaks are the best candidates for markers, and
thus have the lowest costs, as given by 

                      Local cost = 1 - normalized amplitude.            (1)

Note that peaks are also located in the unvoiced regions, but are 
considered differently than are the peaks in the voiced regions, as 
described in a later section.

2.3. Organization of peaks into frames

In order to conveniently use dynamic programming, the peaks
are grouped in terms of overlapping frames, with frames chosen 
so that ultimately one cycle marker should be found in each

frame. With frames appropriately chosen, and assuming that the 
pitch tracking is reasonably accurate, dynamic programming can 

be used to find the best fitting markers to the pitch track.

However, there may still be errors if the actual pitch periods
deviate “too much” from the nominal pitch period. This is related 
in part to inaccuracy of the pitch tracking and also to the
sometimes rapidly varying pitch periods within a block.
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Figure 1: Illustration of frames within a block, and possible
errors. The shaded regions represent the interval within which a 
pitch marker will lie assuming there is a possible ±10% error
with respect to the assumed pitch period of 100 sample points.
Thus the possibility of a pitch marker location outside the
assumed area grows as the frame number increases in a block.
This figure assumes a pitch marker (last one found in previous 
block) is located at the beginning of the block (a voiced region).

As shown in Fig. 1, frames are typically 2*pitch periods
long and are spaced 1 pitch period apart.  Since the first frame in 
a block is synchronized to begin at the last pitch period marker 
found in the preceding block (in the case of a voiced region), the 
expected location of each pitch period marker is at the center of 
each frame. However, as shown in Fig. 1, if the actual period
deviates by as much as 10% from the value obtained from the
pitch track, after only 4 frames, the range of locations for pitch 

period markers is nearly as wide as the entire frame.

2.4. Use of dynamic programming

After determining the peaks and grouping them into frames, two 
matrices are formed. One matrix (A) stores the LOCAL COST

values (as mentioned above) and the other matrix (B) stores the 
TRANSITION COST values. The entries in matrix B are linearly 
proportional to the squared difference between peak locations in 
consecutive frames, as compared to the expected pitch periods.
Thus the transition costs increase as the spacing deviate from the 
expected spacing based on the pitch track.

The transition cost described above is defined as follows:

( ) 2
Est.pitch period - I-J

TransitionCost
Est.pitch period

=
⎛ ⎞
⎜ ⎟⎝ ⎠

               (2)

              Where, I = candidate peak location in ith frame,
                          J = candidate peak location in i-1th frame,
                and Est.pitch period is the estimated pitch period.

Dynamic programming is then used to find the lowest weighted
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cost path through the A and B matrices. The results of this path 

are the most likely pitch markers over the interval processed.

2.5. Post processing

The post processing step is used to take a closer look at peaks
found from the preceding step, which lie in regions of speech

classified as unvoiced. Markers that are found in unvoiced region 
are retained only if they have large amplitude values.
Normally, markers found in unvoiced regions with amplitudes
greater than 1/5 (v-u) or 1/10 (u-v) of the largest amplitude peak 
in the block are retained, whereas smaller peaks are eliminated. 
The bottom panel in figure 2 shows the final pitch markers
identified in a sample speech signal.

Figure 2: Top panel shows the pitch markers (black dashed lines) 
identified in control signal. Bottom panel shows pitch markers
identified in speech signal. Note signal in both the panels
corresponds to v-u-v-u transitions.

3. EXPERIMENTAL VERIFICATION

3.1   Database

The database used for evaluating the cycle-by-cycle marking
algorithm is the Keele database [9] which consists of 10

sentences (5 male speakers, 5 female speakers) sampled at 20

kHz, each about 30 seconds long. This particular database has
been designed for evaluations of pitch tracking routines, since it 
is reasonably large and varied, and also has a simultaneously
recorded laryngograph signal for which the pitch periods are
quite apparent. The database is also supplied with a reference
pitch track, which can be used for evaluation of algorithms.

3.2. Control markers

The laryngograph signal mentioned above was used to compute 
control markers so that the algorithm presented in this paper
could be evaluated quantitatively. After extensive empirical
testing via visual inspections of the waveform,  it appeared that a 
heuristic algorithm  was more reliable for locating the markers in 
the laryngograph signal than the more complex method described 

above. Note that since the primary method given in this paper
was developed explicitly for acoustic speech signals, and since
the larygngograph signal is substantially different from the
acoustic signal, it does not seem particularly surprising that a
different method for identifying markers was more suited to the 
control signal. The best method found was to first-order
difference the signal, lowpass filter it at 1 kHz, and then to locate 
prominent peaks within a spacing approximately equal to the

pitch period in the supplied reference pitch track. Figure 2
illustrates the algorithm, showing the markers obtained for both 
the control signal (top panel) and speech signal (bottom panel).

3.3. Algorithm for error determination

In order to compute errors, the following two processing steps
were first performed.

1. The first step was to locate speech markers closest to each pair 
of consecutive control markers (control markers located at Ci

and Ci+1, speech markers located at Si   and Si+1).
2.  The difference between the speech markers from step 1, TS = 

Si+1 – Si was computed and the difference between the control 

markers, TC= Ci+1 - Ci, was computed. The differences
between these differences, TD = TS – TC, was considered as the 
error. If no speech marker was found close to either or both of 
the control markers, a default value (typically average pp) was 
used to define the error.  Note that the difference of differences 
was used as an error measure, rather than absolute differences 
between markers in the control and speech signal, since there 
appeared to be delays between the two signals. 

4. EXPERIMENTAL RESULTS

Evaluations were conducted using two different pitch tracks. For
one case, the reference pitch track provided in the Keele database 
was used and for the other case, the YAPT-generated pitch track 
was used.   In both cases, however, the supplied reference pitch 

track was used to compute the reference markers from the
control.  It was found that the marking accuracy in the speech
signal was slightly higher using the YAPT generated pitch track 
for the acoustic signal pitch marking, so results are shown only 
the YAPT-computed pitch track as a graph (Fig. 3).  Plotted are 
the percentage of pitch cycles for which the error is less than or 
equal to a certain deviation, as given on the x axis. From Fig. 3, it 
can be observed that the accuracy is considerably higher for the 

female speakers than for the male speakers. The overall marking 
accuracy is quite high, as over 90% of all marks are extremely
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Figure 3: Accuracy of pitch tracking using YAPT pitch track.

close (within 0.3ms) to the marks in the laryngograph signal, and 
over 96% of the pitch marks are quite close (within 1 ms) to the 
control marks. These results were obtained with a local cost/
transition cost ratio of .75. In general it was observed that results 

did not change much as the ratio was varied between 0 (i.e., local 
costs not used) to 1 (local and transition costs equally weighted). 
However, accuracy did degrade substantially if local costs were 
weighted much more heavily than transition costs.

Another set of experiments was conducted to determine the 
robustness of the algorithm to errors in the pitch track used for 
estimating speech markers, with results shown in Fig. 4. The

numbers on the x-axis represents the amount of error present in 
pitch track used w.r.t the reference pitch track; a value of 1
implies no error, a value of 2 implies 100% error in track (pitch 
doubling). This experiment used the reference pitch track instead 
of the YAPT pitch track for estimating speech markers as,
presumably, this supplied track is a better standard. The tests
were conducted using different block sizes (3*pp-7*pp). The
algorithm was found to have an error tolerance range of -10% to 

+100% (in the frequency domain) or -50% to +11.1% (in the
time domain) when considering 90% or more of the deviations‘d’
to be =1ms. For this tolerance range, the number of false
positives generated by the algorithm ranged from a minimum of 
0.04% (7*pp long block, -10% error in track) to a maximum of 
17.87% (3*pp long block, +100% error in track). Upon
considering only the instances when the number of extraneous
peaks generated is =1%, the algorithm has a tolerance range of 

-10% to +60% (frequency domain), for block sizes (3*pp-7*pp).

5. SUMMARY

In this paper we have presented an algorithm to determine pitch 
markers in the speech signal based on a prior knowledge of pitch 

values. Experiments have shown  that  the algorithm results in
about 96% of the total pitch periods  having a small error (less
than 1 ms)   and about 90% of frames having an extremely small 
error (less than .3 ms). The algorithm has also been shown to be 
robust to errors in the pitch track used for identifying pitch
markers. It also generates =1% extraneous peaks. 
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Figure 4: Robustness of the algorithm to errors in pitch track
used for identifying pitch markers.
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