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ABSTRACT
Noise mitigation systems for speech coding and recognition have

primarily focused on spectral subtraction techniques due to their

well understood behavior and computational simplicity. As com-

putation complexity becomes a smaller constraint, understanding

the characteristics of different estimation schemes becomes more

important. In this paper, the merits of two algorithms based on di-

rect estimation of the linear prediction spectrum of a speech signal

are explored. These algorithms are maximum likelihood (ML) and

minimum mean square error estimation (MMSE) of the autore-

gressive speech spectrum. The MMSE algorithm is able to effec-

tively improve objective quality at low SNRs while also improving

the speech recognition accuracy by 20-30% on the Aurora2 test set

at the cost of requiring two orders of magnitude more operations

than the ML method. Because of these improvements, autoregres-

sive based algorithms should be considered in the future for noise

robust speech processing tasks.

1. INTRODUCTION

Noise mitigation has long been an important topic in all aspects

of speech processing. In general, the field has been dominated by

algorithms based on the spectral subtraction approach despite the

wide variety of algorithms that have been proposed for improv-

ing the performance of speech recognition and compression algo-

rithms in noisy environments. One class of algorithms is based on

the direct estimation of the all-pole model of speech. These meth-

ods, which were first proposed in [1] and improved and applied

in [2], iteratively filter the speech signal with an algorithm simi-

lar to expectation maximization (EM). These algorithms have not

found widespread acceptance for a variety of reasons. Compared

to traditional spectral subtraction algorithms, these algorithms re-

quire over an order of magnitude more computation. Secondly,

direct use of the approximate MAP algorithm has been shown to

produce erratic spectral dynamics, which must then be dealt with

by various ad-hoc approaches [2].

Since these algorithms were presented, the availability of com-

putational resources has increased dramatically, and implementa-

tions of these algorithms have become more practical. For this rea-

son, maximum likelihood estimation of LPC parameters for speech

coding has been recently studied in [3], where the direct estimates

were found to be too erratic to be used alone. However, these

estimates could be improved by using models of the spectral dy-

namics. In addition, MMSE estimation has been used for speech

recognition [4], where the use of the autoregressive (AR) model

was found to improve performance over a similar algorithm with

no AR assumption.

The goal of this paper is to describe the mathematical simi-

larities between ML and MMSE estimators of speech LPC param-

eters, while comparing their relative estimation performance and

computational efficiency.

2. ALGORITHMS

We assume that the nth observed signal block yn[t] = sn[t] +
vn[t], t = 1, . . . , N , is the sum of an autoregressive speech sig-

nal, sn[t], and a random Gaussian noise signal, vn[t], with power

spectrum, Pv(ω). This is expressed by

sn[t] =

p∑
k=1

an[k]sn[t − k] + en[t], en ∼ N (
0, σ2

sI
)
. (1)

2.1. ML Estimation

The EM algorithm finds the ML estimate of the linear prediction

coefficients by constructing a sequence of estimates with increas-

ing likelihood, θ[k] = {â[k]
l , σ̂2,[k]}, where k is the iteration num-

ber. The estimate θ[k] maximizes the likelihood of the complete

data, {s,v}, conditioned on the observations y and the previous

iteration’s estimate θ[k−1]. The algorithm is initialized by two iter-

ations of an approximate MAP algorithm [1]. Each iteration con-

sists of two steps: an E-step where the conditional power spectrum

of the speech is calculated given the previous estimates, and an M-

step where the parameters are updated. Under the assumption that

the frequency components are decorrelated by the Fourier trans-

form, the distribution for each speech spectral component is

S(ω)|Y (ω), θ[k] ∼ N
(
Ŝ[k](ω), C

[k]
S (ω)

)
, (2)

where the different spectra are given by

Ŝ[k](ω) =
P

[k]
s (ω)

P
[k]
s (ω) + Pv(ω)

Y (ω), (3)

C
[k]
S (ω) =

P
[k]
s (ω)Pv(ω)

P
[k]
s (ω) + Pv(ω)

, (4)

P [k]
s (ω) =

∣∣∣∣∣
σ2,[k]

1 +
∑p

l=1 a
[k]
l e−jlω

∣∣∣∣∣
2

. (5)
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The E-step requires the calculation of the expected squared spec-

tral amplitude

E

[
|S(ω)|2 ∣∣ Y (ω), θ[k]

]
=

∣∣∣Ŝ[k](ω)
∣∣∣2 + C

[k]
S (ω). (6)

For the M-step, we get the conditional autocorrelation sequence by

taking the inverse Fourier transform

r[k+1]
m =

1

N

∑
ωl

E

[
|S(ωl)|2

∣∣ Y (ωl), θ
[k]

]
ejωlm. (7)

The auxiliary function is maximized by solving

â[k] = −
(
R[k−1]

s

)−1

r[k−1]
s , (8)

σ̂2,[k] = r
[k−1]
0 −2â[k],T r[k−1]

s +â[k],T R[k−1]
s â[k], (9)

where Rs and rs are constructed from the sequence rm in the same

manner as in the autocorrelation method. This algorithm iterates

until the change in the likelihood is sufficiently small. The final

estimate of the LPC spectrum is then given by the last iteration âK .

Nonparametric feature vectors such as MFCCs, which is notated

by M, can be computed using the final expected spectrum:

f̂ = M
(
Ŝ[K]

)
. (10)

Further details can be found in [3, 5].

2.2. MMSE Estimation

Another estimation approach is to find the MMSE estimate of some

function of either the LPC parameters or the speech signal. Be-

cause no analytic solution exists, we perform Monte Carlo inte-

gration on samples from a|y. Although it is difficult to find this

distribution, the distributions for a|(σ2, s,y), σ2|(a, s,y), and

s|(a, σ2,y) can be derived analytically. If they are arranged in

a Gibbs sampler and sampled sequentially, these values converge

in distribution to the desired random variables a|y, σ2|y, and

s|y. Again, the algorithm is performed in the frequency domain to

achieve the sampler:

a[k]|σ2,[k−1], s[k−1],y ∼ N
(
â[k], C [k]

a

)
, (11)

σ2,[k]|a[k], s[k−1],y ∼ IG
(

L

2
− 1,

L

2
σ̂2,[k]

)
, (12)

S[k](ω)|a[k], σ2,[k], Y (ω) ∼ N
(
Ŝ[k](ω), C

[k]
S (ω)

)
. (13)

Most of the terms are the same as in the EM algorithm described

above, with the exception of the following:

C [k]
a = σ2,[k−1]

(
NR[k−1]

s

)−1

, (14)

r[k]
m =

1

N

∑
ωl

∣∣∣S[k](ωl)
∣∣∣2 ejωlm. (15)

For each block, the sampler in Equations 11-13 creates a se-

quence of K samples from the posterior distributions. However,

the chain requires several iterations to converge to its stationary

distribution. For this reason, only samples Kb through K are con-

sidered, where Kb is the number of “burn-in” samples. From these

samples, the conditional expectation of any function of the speech

signal or LPC polynomial can be calculated by transforming the

samples and averaging. For example, the conditional mean of any

transformation of the LPC parameters is given by

â′ =
1

K−Kb

K∑
k=Kb+1

F
(
a[k]

)
, (16)

while the conditional mean of the MFCCs can be calculated by

f̂ =
1

K−Kb

K∑
k=Kb+1

M
(
S[k]

)
. (17)

Further details can be found in [4, 5].

One major issue with the Gibbs sampler algorithm is that it

requires a large number of iterations to converge and produce ac-

curate estimates. The effect of the number of iterations required

was tested empirically and is nearly independent of the SNR. In

general, the performance is nearly optimal after 6000 samples with

500 “burn in” samples [5]. These values are used in the following

experiments.

3. PERFORMANCE DIFFERENCES

3.1. Example Spectra

To illustrate the differences between the two algorithms, the results

of several simulated noisy vowels are shown in Figure 1. In this ex-

ample, 20 samples are taken from the process with additive white

noise at 4 dB SNR. Four different estimators are then compared:

standard LPC, MMSE estimation, and ML estimation. In general,

the standard LPC produces very biased estimates, while the ML

estimates produce nearly unbiased estimates with very high vari-

ances. The MMSE estimator outperforms both of these methods

with estimates that are unbiased and with relatively small variance.

3.2. Local Maxima

If one looks carefully at the ML spectral estimates in Figure 1,

spurious formants will be noticed. These typically occur when

there is a small spike in the noise in a particular frequency bin.

In the case of autoregressive parameter estimation in noise, the

surface can have multiple local maxima, and the EM algorithm

does not guarantee convergence to the global maximum. This can

yield a final spectrum that includes these spurious formants.

To illustrate these problems, synthetic data is sampled from an

AR(4) process with two strong resonances. This signal is then cor-

rupted by additive white noise. From this data, the EM algorithm

is used to find the maximum likelihood estimates of an AR(2) pro-

cess. With three different sets of initial conditions, there are three

distinctly different solutions as shown in Figure 2. This figure

also shows the noisy spectrum, |Y (ω)|2, and the noise spectrum,

Pv(ω). The likelihood surface, which is parameterized in the line

spectrum domain, is plotted in Figure 2. To simplify the surface to

two dimensions, the log-likelihood is maximized over σ2.

In this plot, the flat spectrum is represented by the broad peak

in the likelihood, while the two resonant spectra are found by pick-

ing one of the more narrow peaks. In many cases with higher order

models, the local peaks may exist for narrow formants that do not

actually exist. The advantage of the MMSE estimates is that these

local maxima with small regions of support have a smaller effect

when they are integrated over for the final estimate. Therefore,
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Figure 1: Spectral samples of three spectral estimation algorithms. The true spectrum is represented by the wide line with SNR = 4 dB.

this method is tends to produce fewer of these spurious formants

created by the ML estimator.

3.3. Spectral Matching

To test the average performance of these estimators, noisy speech

was generated by taking a whispered speech corpus and corrupting

it with electronically added noise of differing SNR. The different

estimation schemes were then applied to these waveforms. The

resulting LPC spectra were compared to the LPC parameters of the

clean waveform with the Itakura distance measure. In this paper,

the median distances over the waveforms is presented.

The average spectral distortion of the ML and MMSE codecs

is listed in Table 1. In all cases, the EM algorithm actually in-

creases the spectral distance to the clean waveform, which is ex-

pected due to the erratic nature of the ML estimator. This effect

was reduced in [3] by using a smoothing algorithm in the line

spectrum domain based on jump Markov linear systems described

in [6]. The average distortion from the smoothed estimates are also

included in Table 1. The effect of the smoother on these algorithms

is approximately equivalent to increasing the input SNR by 5 dB.

One can also see that the performance of the MMSE algorithm is

superior to the ML estimator. The distances associated with using

both standard LPC and the MELPe codec, which uses a spectral

subtraction type front-end enhancer, are listed at the bottom.

Table 1: Comparison of median Itakura distances for different al-

gorithms before and after spectral smoothing.

Signal to Noise Ratio
Algorithm 0 dB 5 dB 10 dB 20 dB

ML 1.1354 0.8010 0.5777 0.0554

MMSE 0.7681 0.5654 0.3587 0.04861

ML+Smooth 0.788 0.639 0.508 0.0428

MMSE+Smooth 0.521 0.350 0.200 0.041

LPC 1.0263 0.7657 0.4778 0.1169

MELPe 0.95974 0.6765 0.4882 0.3367

3.4. Recognition Performance

These algorithms are applicable to the estimation of feature vec-

tors for automatic speech recognition systems. The Gibbs algo-

rithm has been tested extensively on the Aurora2 connected digits

recognition task [4]. In this section, the ML and MMSE algorithms

for generating feature vectors are compared using this test.

The experimental setup uses 13-dimensional MFCCs estimated

using Equation 10 for ML estimation and Equation 17 for the

MMSE estimator. To simplify the comparison, an ideal noise es-

timator averaged over 15 frames of the noise signal was used to

create the noise spectral model. The models were trained using

clean audio and tested over the four noise types of test set A.

I - 231

➡ ➡



0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

Frequency

P
S

D
 (

dB
)

Three Local Maxima

|Y(ω)|2

P
v
(ω)

Est Spec

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Likelihood Surface With Noise

Figure 2: Example of multiple local maxima for noisy AR estimation. The left plot shows the spectrum associated with three local maxima

in the likelihood surface. The right plot shows the likelihood surface. The x and y axes represent the first and second line spectral pair

frequencies of the AR(2) polynomial, respectively.

−5 0 5 10 15 20 clean
0

10
20
30
40
50
60
70
80
90

100

SNR (dB)

A
cc

ur
ac

y 
(%

)

Gibbs Sampler
EM Algorithm
Unenhanced

Figure 3: Comparison of ML and MMSE algorithms, averaged

over set A, across SNRs.

The results are shown in Figure 3. One can see that the per-

formance of the MMSE algorithm is superior to the ML algorithm

across the SNRs. The ML algorithm performance very rapidly de-

teriorates at the higher SNRs, but levels off as more noise is added.

This is due to the fact that the EM algorithm produces more erratic

estimates in low intensity sections of the waveform. Overall, the

MMSE estimates produce results that are 20-30% better than the

the ML estimator.

3.5. Computation

In both methods, each iteration requires approximately the same

amount of computation. In the ML estimator the expected value of

the speech spectrum is taken, while it must be drawn from a distri-

bution in the MMSE estimator . In addition to the ML calculations,

the MMSE estimator requires the covariance of the LPC estimates,

which requires several order p matrix operations. In addition, the

Gibbs sampler requires a final averaging phase that increases the

computation slightly. The major difference is in the number of it-

erations required. For the ML estimator, 20 to 100 iterations is

sufficient for convergence, while 6000 iterations are required for

the Gibbs sampler.

4. CONCLUSION

Both ML and MMSE estimation of linear prediction spectra have

been described in this paper. Although they both have very sim-

ilar computational structure, the stochastic MMSE estimator re-

quires approximately one hundred times the computation of the

equivalent ML estimator. However, the MMSE method in gen-

eral produces more consistent results and superior performance in

both spectral distance and automatic speech recognition results. In

addition, the MMSE-based techniques also benefit from the flexi-

bility gained from being able to estimate any function of the clean

speech. This makes these algorithms applicable to any speech pro-

cessing task included analysis, coding, and recognition.
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