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ABSTRACT 

This paper proposes a speech signal analysis approach that uses 

the exponential autoregressive (ExpAR) model. In real speech 

signal, the amplitude and frequency are fluctuating randomly. 

These fluctuations are non-Gaussian and have nonlinear 

dynamics. This means that they cannot be modeled adequately 

with linear AR models or compositions of sine/cosine waves as 

these analysis methods are known to be affected by such 

fluctuations. Our proposed approach using ExpAR model can 

deal with such fluctuations, and it is autoregressive in form with 

amplitude dependent exponential coefficients. Studies to fit the 

ExpAR model to real speech data have shown that AIC 

(Akaike’s Information Criteria) values achieved by the ExpAR 

model are better (lower) than those obtained with a linear AR 

model, and that the ExpAR model provides a good model of 

speech fluctuations as movements of the position of its poles. 

The coefficients change with time depending on the amplitude 

of speech signals, and so this model is also capable of realizing a 

fine instantaneous spectral estimation. The modeling of such 

speech fluctuations has the potential to be used for improving 

the automatic speech recognition performance in clean or noisy 

environments, and the naturalness of synthesized speech. 

1. INTRODUCTION 

Linear autoregressive (AR) models have long been used in 

speech analysis. This approach assumes that the speech signal is 

an AR process with a short time frame of, for example, 25 ms, 

and it estimates the AR coefficients from the signal [1][2].  

However, even when the frame length is this short, in 

practice the speech signal is not a strict AR process. For example, 

Fig.1 shows the short-term waveform of the vowel /o/ spoken by 

a Japanese male. Even in such a stable part of speech, the length 

of the period between glottal pulses changes with a one by one 

cycle (jitter), and the amount of expiration also changes 

randomly (shimmer) [3]. These phenomena correspond to 

amplitude and fundamental frequency fluctuations with non-

Gaussian characteristics and nonlinear dynamics [4]. Essentially, 

such signals with nonlinear fluctuations cannot be modeled 

adequately with linear AR models or compositions of 

sine/cosine waves such as harmonic analysis. Indeed, these 

analysis methods are known to be affected by such fluctuations, 

and sometimes this results in an insufficient spectral shape 

estimation. Such an effect often degrades, for example, the 

performance of automatic speech recognition (ASR). With 

respect to speech synthesis, it is well known that such 

fluctuations improve the naturalness of synthesized speech [5]. 

In terms of psychoacoustics, these fluctuations may be one of 

the cues for perceiving speech in noisy environments [6]. 

Therefore, if modeling the fluctuations can provide a better 

representation of speech signals, then the model has the potential 

to improve the performance of ASR in clean or noisy 

environments, and the naturalness of synthesized speech. In 

addition, since such modeling can represent the characteristics of 

speech signals well, it can possibly be used as filtering 

parameters when using state-space models to enhance signals, 

such as with Kalman filtering. 

Haggan and Ozaki proposed the exponential autoregressive 

(ExpAR) model for modeling nonlinear fluctuations of time 

series data [7]. This model is autoregressive in form with 

amplitude dependent exponential coefficients. The ExpAR 

model can effectively predict such nonlinear fluctuation 

behavior as the year record of a trapped Canadian lynx by 

employing these coefficients. Although this model has been used 

for time series analysis, it has not been applied to speech signals. 

This paper proposes a speech signal analysis approach that 

uses the ExpAR model. Section 2 describes the ExpAR model in 

detail. In section 3, studies fitting the ExpAR model to real 

speech signals are described. In the last section, we provide short 

conclusion of this study. 

2. EXPONENTIAL AUTOREGRESSIVE MODEL 

The conventional linear AR model is as described below, where 

x(t) is the observed signal at time t, i are constant AR 

coefficients, (t) is the prediction error at time t, and p is the 

number of the model order (i = 1, …, p).
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The ExpAR model employs exponential terms that depend on 

the amplitude of the observed signal as the AR coefficients as 

seen below, where  and i are also constant AR coefficient 

parameters.  is a scaling factor used to control the effect of the 

exponential terms [7]. 
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Figure 1: Waveform of Japanese vowel /o/. 
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Due to the presence of exponential terms with an x(t–1)

multiplier, this model can change its behavior depending on the 

amplitude of x(t–1). This model is capable of realizing the 

amplitude-dependent frequency and limit cycle behavior. If we 

ignore (t) so that the model exhibits limit cycle behavior, the 

necessary conditions for the solutions of this model are as shown 

below.

(i) the roots of 01

1 p

pp  lie inside the unit 

circle 

(ii) the roots of 0)()( 1

11 pp

pp  do not 

all lie inside the unit circle 

The characteristic equation (i) corresponds to the equation of the 

ExpAR model when an x(t–1) is at infinity. On the other hand, 

the characteristic equation (ii) corresponds to the equation when 

an x(t–1) is equal to zero. The above means that for a small x(t–

1), the system tends to diverge due to condition (ii), while for a 

large x(t–1), the system tends to converge towards zero due to 

condition (i). In addition, to avoid unstable singular points, the 

following condition also should be satisfied. 

(iii) 1)1( ii
or 0)1( ii

For example, we consider the following ExpAR model [7]: 
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This model satisfies all the above three conditions. The crosses 

and circles shown in Fig. 2 show the characteristic roots for 

conditions (i) and (ii), respectively. The poles of the ExpAR 

model move between these two points shown in Fig. 2 

depending on the amplitude (value) of x(t–1). 

The estimation of order p, and the coefficients { , ( i, i, i = 

1, …, p)} in the ExpAR model essentially needs a nonlinear 

optimization procedure. However, this problem can be overcome 

by fixing parameter  at one of a grid of values and estimating 

the order p and corresponding i, i parameters. Then the 

problem becomes one of fitting a linear regression of x(t) to the 

series { x(s) ; s < t } and { exp(– x(t–1)2)x(s); s < t }, where 

{ x(t) } is a mean deleted series. The order p of the fitted model 

is selected by using AIC (Akaike’s Information Criteria) for a 

nonlinear time series [8] as below, where m is the maximum 

order of the model to be considered, n is the total number of 

observations, and the least squares estimate of the residual 

variance of the model 2ˆ
p
.
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The term (2p+1) is the number of estimated parameters in the 

model, including the fitted mean. A model with a lower AIC 

value is better than a model with a higher one. 

The models fitted for each  can also be compared using the 

AIC, to find the best model over all . After fixing  = 0, the 

estimation procedure is used to fit the model 
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for t = p+1, …, n; p = 1, …, m. The AIC is also used to choose 

the best order p. The least squared values of the parameters ( i,

i) can be estimated as the values minimizing the sum of 

prediction errors S described below. 
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In matrix form, we can introduce , X, and Y as below. 
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By using these matrices, the necessary conditions whereby 

parameter  minimizes S can be written as follows. 
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We can then obtain the least squared estimated values ˆ  of 

parameter  as follows. 
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Figure 2: Characteristic roots of exponential AR 

model x(t) = (1.9482+0.2408exp(-1.0507x(t-1)2))x(t-1) + (-

0.9585-0.2534exp(-1.0507x(t-1)2))x(t-2) on the unit circle.
The crosses and circles are roots for conditions (i) and (ii), 

respectively.

Figure 3: Waveforms of Japanese vowels (from the 

top) /a/, /i/, /u/, /e/, and /o/ spoken by a Japanese male 

speaker. 
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Note that ˆ  is only the least squared estimated value, therefore, 

it does not always satisfy conditions (i)-(iii). If these conditions 

are not satisfied, certain additional numerical optimizations are 

needed for satisfying these conditions. 

3. FITTING MODEL TO SPEECH 

We performed some studies to fit the ExpAR models to real 

speech data. As speech data, we used five Japanese vowels /a/, 

/i/, /u/, /e/, and /o/ spoken by a Japanese male. These vowels 

were recorded at a sampling rate of 48 kHz, and down-sampled 

to 16 kHz. Figure 3 shows the waveforms of these five vowels. 

These signals are largely stable, although jitter and shimmer can 

be observed. 

3.1. Fitting ExpAR model 

First, we compared the ExpAR model and the linear AR model 

in terms of AIC. AIC is a criteria that evaluates the accuracy of a 

model, and it is widely used to select an adequate structure of a 

statistical model [9]. AIC values are calculated for five vowels, 

where each frame length was 800 sampling points. In this AIC 

calculation for the ExpAR models, the  value was fixed as 440. 

Figure 4 shows the AIC values for five vowels as a function of 

the order p (p = 1, …, 50). As shown in Fig. 4, AIC values 

achieved with the ExpAR model were lower than those obtained 

with the linear AR model. This confirms that the ExpAR model 

is more suitable for speech data than the linear AR model. 

Henceforth, since the linear AR model achieves enough small 

AIC value around when p = 25, only the 25-order ExpAR model 

and the 25-order linear AR model were used. In this paper, we 

used only the AIC criterion to select model. MDL, BIC and 

other statistical criteria are not considered. 

 Second, we fitted a 25-order ExpAR model to these speech 

data. Figure 5 shows the estimated waveforms with the ExpAR 

models. As shown in the figure, the fitting confirmed that this 

model can predict the speech signal well (see also Fig. 3). Next, 

we compared the ExpAR model and the linear AR model in 

terms of the prediction errors.  For this comparison, we used 25-

order ExpAR and determined a fixed  for each vowel as the 

value that minimizes the AIC, for example, 559.42 and 24.6 for 

vowel /a/ and /o/, respectively.  Table 1 shows the result. The 

prediction errors were always lower than those estimated by 

using a conventional 25-order linear AR model. 

3.2. Pole behavior 

Thirdly, we observed the behavior of the poles (eigenvalues) of 

the ExpAR model. In the ExpAR model, the coefficients of the 

AR model change with time depending on the signal amplitude, 

therefore, we can obtain the characteristic roots and 

instantaneous spectrum for each sampling point. The poles, 

which are calculated at each sampling point, are plotted in Fig. 6. 

Figure 6 shows that the positions of the poles move with respect 

to time within certain ranges. As described above, these ranges 

are fixed by eigenvalues calculated from characteristic equations 

described in necessary conditions (i) and (ii). This behavior 

corresponds to the speech sound fluctuations. These 

characteristics of the ExpAR model may provide a good 

representation of the speech signal fluctuations. 

3.3. Instantaneous spectrum 

Lastly, we estimated instantaneous spectrum for each sampling 

point. Figure 7 shows 125 estimated instantaneous spectra 

Figure 5: Vowel waveforms estimated by fitting the 

ExpAR model to vowels. (from the top) /a/, /i/, /u/, /e/, 

and /o/. 

Table 1: Prediction errors achieved by the ExpAR model and 

the linear AR model for each vowel. The errors achieved by the 

ExpAR is always lower than those achieved by the linear AR. 

ExpAR model Liner AR model

/a/ 1.8259 2.3682
/i/ 1.2506 1.5872
/u/ 0.6009 0.8029
/e/ 1.429 2.2171

/o/ 0.2899 0.3698 (10
-3

)

Figure 4: AIC values of the linear AR model and the 

ExpAR model as a function of the model order. 

/a/ /i/

/u/ /e/

/o/ 

Linear AR model 

ExpAR model
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(corresponding to about one speech signal cycle) simultaneously. 

To compare with the spectrum estimated by the linear AR model, 

Fig. 8 shows the spectrum. As shown in the figures, although the 

parameters are estimated from 800 points speech signal, the 

ExpAR model can estimates fine instantaneous spectra at each 

sampling point. On the other hand, the spectrum estimated by 

the linear AR model is affected by the speech fluctuation, and 

then it results in an averaged spectrum. 

4. CONCLUSION 

This paper proposed a speech analysis approach that uses the 

ExpAR model to deal with random fluctuations in speech signals. 

The ExpAR model can represent amplitude-dependent behavior 

using exponential terms. Some studies designed to fit ExpAR 

models to speech signals confirmed that this model achieves 

lower AIC values than linear AR models. In addition, the studies 

showed that the ExpAR model well represents the fluctuations of 

the speech signal, and that it can estimate fine instantaneous 

spectra at each sampling point. The ExpAR model is highly 

suitable for use with speech signals and is therefore potentially 

applicable as a feature parameter extraction method for ASR. It 

could also be applied to the parameters themselves to synthesize 

more natural speech. 
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Figure 7: Instantaneous spectrum with time estimated 

by fitting the 25-order ExpAR model to vowel /a/. 

Figure 8: Spectrum estimated by fitting the25-order 

linear AR model to vowel /a/. 

Figure 6: Behavior of poles with time. (from the top) 

fitting ExpAR models to vowel /a/, /i/, and /u/. 
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