
SPEECH ANALYSIS BY ESTIMATING PERCEPTUALLY RELEVANT POLE LOCATIONS 

Venkatraman Atti and Andreas Spanias 

Department of Electrical Engineering, Ira A. Fulton School of Engineering, 

Arizona State University, Tempe, AZ 85287-5706, USA 

[atti, spanias]@asu.edu 

ABSTRACT

An  approach for estimating the perceptually-relevant pole 

locations is described. This “perceptual poles” are determined by 

using an auditory excitation pattern-matching method. The 

estimated perceptual poles are then used to construct a 

perceptually-motivated all-pole (PMAP) filter for use in speech 

analysis/synthesis. The proposed PMAP approach is compared 

against some of the existing perceptually-based linear prediction 

(LP) methods, i.e., the perceptual LP and the Warped LP. The 

PMAP approach compares well against the perceptual LP and 

the warped LP in terms of speech reconstruction quality and 

estimation of the formant frequencies. 

1. INTRODUCTION

Limitations associated with the conventional linear prediction 

(LP) have been studied extensively and several extensions to 

LP-based speech analysis-synthesis have been proposed [1]-[3]. 

Because of the underlying source-system model in the 

conventional LP, it is not straightforward to fully integrate 

psychoacoustic principles in linear predictive coding (LPC). A 

simple, yet popular, approach employed in speech coding 

standards is to use a perceptual weighting filter (PWF) to shape 

the quantization noise according to the masking properties of the 

human ear [4] [5]. However, the PWF is not suitable when there 

is a pronounced spectral tilt, especially, in case of wideband 

speech [6]. Other popular LP methods that make use of certain 

perceptual constrains and the auditory psychophysics include, 

the perceptual LP (PLP) [7] and the warped LP (WLP) [8] [9]. 

We note that both the PLP and the WLP impose indirectly 

perceptual constrains either by manipulating the input speech 

spectrum or by scaling appropriately the frequency axis. 

Consequently, both these methods tend to sacrifice some of the 

properties of conventional LP and end up incorporating several 

inexplicit psychoacoustic models into the LP [1]-[3], [9]. In 

particular, in the PLP, a perceptually-based auditory spectrum is 

obtained by filtering the input speech spectrum using a 

filterbank that mimics the critical band structure of the auditory 

filterbank. An all-pole filter that approximates the auditory 

spectrum is then computed using the autocorrelation method [4]. 

On the other hand, in the WLP [8] [9], the main idea is to warp 

the frequency axis (usually, according to a Bark scale) prior to 

performing the LP analysis to effectively provide a better 

resolution at some frequencies than at others. This is typically 

done by replacing the unit-delay elements of the LP analysis 

filter with all-pass sections, i.e., 1 1( ) /(1 )z z , where,  is 

the warping coefficient. 

In this paper, we introduce a new speech analysis/synthesis 

approach that employs a perceptually-motivated all-pole 

(PMAP) filter. The proposed PMAP modeling yields: i)

improved speech reconstruction quality; ii) accurate estimation 

of the formant frequencies; and iii) improved spectral modeling. 

The main idea is to directly estimate the perceptually relevant 

poles based on an auditory excitation pattern (AEP)-matching 

method called excitation similarity weighting (ESW) [10]-[12]. 

The ESW methodology was first proposed in the context of 

sinusoidal modeling of audio in order to rank and select the 

perceptually relevant sinusoids for scalable audio coding. More 

details on the ESW technique are given in Section 2. As a 

preamble, it is interesting to analyze the pole locations estimated 

by the various LP-based speech analysis-synthesis methods. 

Simultaneously, we will also highlight some of the merits of the 

proposed PMAP modeling as opposed to the existing PLP and 

WLP. In Figure 1, a 20ms voiced speech segment sampled at 

16kHz is used to illustrate the pole locations obtained from the 

conventional LP (shown as ‘o’), the PLP (‘ ’), the WLP (‘ ’),

and the PMAP modeling (‘*’). The first four formant 

frequencies are indicated as F1, F2, F3, and F4. This figure also 

shows the FFT spectrum (dotted line) and a tenth-order LP 

spectral envelope (solid line) corresponding to the voiced-speech 

segment. From Figure 1, we note that, i) the conventional LP 

fails to model accurately the formants F2 and F3. This is 

Figure 1. An example depicting the pole locations estimated 

by the LP (‘o’), the PLP (‘ ’), the WLP (‘ ’) and the PMAP 

modeling (‘*’) corresponding to a voiced speech segment 
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primarily due to the psychoacoustically-blind least squares error 

minimization criterion used in LP (e.g., see [16] and [3]); ii) the 

PLP manages to model the formants F1, F2, and F4, however, it 

totally misses the formant F3. This is because of several 

approximations employed by the PLP in computing the auditory 

speech spectrum [7]; iii) the WLP ( 0.57553 ) gives more 

emphasis to the formant F1 (which is not correct, see observation 

(iv) below) by placing two poles at the F1 formant frequency, 

and manages to model formants F2 and F4. Nevertheless, the use 

of all-pass sections in the WLP would result in delay-free loops 

that leads to dissimilarity in the structures of the analysis and 

synthesis filters. This dissimilarity implies that computationally 

expensive recursive filters will be required for the WLP 

synthesis. Also, it has been pointed out in [9] that a drop of 1-

15dB in the spectral flatness measure (SFM) associated with the 

WLP would occur compared to that of the conventional LP. In 

particular, the WLP sacrifices the whitening property in order to 

provide better modeling at some frequencies and to 

accommodate for the perceptual shaping of quantization noise. 

Several other limitations (e.g., numerical inaccuracies) 

associated with the WLP analysis-synthesis were described in 

[2]. iv) the PMAP modeling not only estimates accurately all the 

formant frequencies, but also ranks the estimated poles 

according to their perceptual relevancies (see perceptual ranks 

shown in Figure 1). Section 2 describes the algorithm for the 

computation of the PMAP filter. Experimental results are given 

in section 3. Section 4 presents a comparative study of the 

computational complexity associated with the conventional LP, 

the PLP, the WLP, and the PMAP modeling. Concluding 

remarks are also included in section 4. 

2. PERCEPTUALLY-MOTIVATED ALL-POLE FILTER 

The idea of constructing a perceptually-motivated all-pole 

(PMAP) filter is a rather simple one. First, we estimate the 

perceptually-relevant pole frequencies using the ESW measure 

[10]. Second, we use an iterative procedure to compute the 

corresponding pole amplitudes [15] [16]. Finally, we construct a 

PMAP filter in cascade-form, i.e., 
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where (ri, i) denote the i-th pole location in polar coordinates 

and p is the total number of poles. Note that in the above 

equation, H(z) is represented as second-order factors in order to 

make use of the conjugate-symmetry associated with the poles. 

One consequence of this is that the prediction order will always 

be even. Nevertheless, the PMAP analysis presented in this 

paper can easily be extended to the case of first-order factors. 

2.1. Perceptual pole frequencies, i

The frequency associated with a sinusoidal stimulus that 

provides the maximum AEP-matching between the original and 

reconstructed speech is selected as a perceptual pole-frequency. 

The motivation for this approach came from the ESW sinusoidal 

component selection strategy proposed by Painter and Spanias 

[10] [11]. The perceptual pole frequencies are computed as 

follows. First, the input speech, s(n), is segmented into 20ms 

frames (320 samples at 16kHz). Next, a candidate set that 

consists of 30 sinusoids is estimated on each frame using the 

short-time Fourier transform (STFT) analysis. An iterative 

ranking procedure is performed next [10]. The objective on the 

k-th iteration is to extract from the candidate set the most 

perceptually salient sinusoid, given the previous (k-1) selections. 

The maximum perceptual salience is associated with the 

sinusoidal stimulus that is able to affect the greatest 

improvement in matching between the AEP1 associated with the 

original signal (i.e., called the reference AEP) and the AEP that 

is associated with the reconstructed signal. In particular, in the 

first iteration, the AEPs associated with each of the estimated 

(K=30) sinusoids are calculated and compared against the 

reference AEP. At the end of the first iteration, the sinusoid that 

generates an AEP most closely resembling the reference AEP is 

chosen as the first component. During the second iteration, each 

of the remaining components is individually combined with the 

first component to determine which of the remaining 

components provides the greatest increase in AEP-matching. 

The process repeats until all the p perceptually-relevant pole 

frequencies have been obtained. 

2.2. Perceptual pole amplitudes, ri

Both the frequency domain and time domain approaches 

have been investigated to estimate the perceptual pole 

amplitudes. In the frequency domain approach, we minimize the 

prediction error, E, that is given by, 
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with respect to ri. In the above equation, |P( m)|2 is the power 

spectral density (PSD) of the input speech segment, N is the 

number of discrete frequencies m, and |H( m)|2 is the PSD 

associated with the PMAP filter. The minimization of E with 

respect to ri, 1 i p , i.e., / 0iE r , yields, 

3 2 0; 1i i iAr B r C r D i p (3)
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Since A, B, C, and D are all real, the roots of the equation (3) 

would contain at least one real value. Also, note that A, B, C, 

and D are all independent of ri. This leads to a convenient 

iterative procedure and only requires that the pole amplitudes be 

initialized first. One possible approach is to initialize the pole 

amplitudes according to the amplitudes associated with the 

sinusoidal stimuli that are estimated in the ESW procedure. This 

frequency-domain approach, however, does not guarantee 

convergence to “true” values primarily because of the LP error 

criterion employed [16]. El-Jaroudi and Makhoul discussed the 

drawbacks associated with the LP error criterion and presented 

1
 The auditory excitation patterns (AEPs) are generated using steps 

similar to [14]. For more information on the AEPs refer to [12] [13]. 
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an all-pole modeling method based on a discrete-form of the 

Itakura-Saito (IS) distance measure [16]. Minimizing the 

discrete-form of the IS error measure with respect to ri is not 

trivial.

To overcome this problem, we present a computationally-

efficient time-domain approach to estimate the perceptual pole 

amplitudes. The method was inspired by the cascade-form LP 

proposed by Jackson and Wood [15]. In [15], the conventional 

direct-form LP was reformulated to compute the roots of the 

predictor polynomial in an iterative manner. In particular, the 

pole angles, i, and the corresponding pole amplitudes, ri, were 

estimated iteratively by solving p simultaneous non-linear 

equations using a modified steepest-descent algorithm. In our 

case, we have already estimated the perceptual pole frequencies, 

i. Therefore, in order to compute ri, we slightly modify the 

update equations presented in [15] to incorporate the already 

estimated pole frequencies, i. The resulting updates for, ri, are 

given by,  

2 2 1

0 1

2 1

, 1
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; 1
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p p

i
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(6)

where µ is the convergence factor, (k, l) denotes the covariance 

matrix of order [2p+1, 2p+1] associated with the input speech 

segment, h(n) is the impulse response of the PMAP filter H(z),

and i(n) is given by, 

2

1 2( ) 2 cos( ) ( ) 2 ( )i i i i i in r h n r h n (7)

and ( ); 1,2tih n t  denote the impulse response of ( )tiH z ,

1 2 2
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z H z
H z
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Although the update equations presented above look deceptively 

complex, note that the only computations required are to 

estimate the covariance matrix (k, l), the impulse response, 

h(n), and the gradient-related parameter, i(n). Jackson and 

Wood have pointed out that an appropriate choice of µ would 

ultimately guarantee convergence to true values [15]. Typically, 

µ values in the range of 0.2-0.4 resulted in good convergence 

rates (see Figure 3). Section 4 further elaborates on the 

computational complexity associated with the PMAP modeling.  

3. EXPERIMENTAL RESULTS 

For all the experiments described in this section, the input 

speech was sampled at 16kHz and segmented as 20ms frames. A 

tenth-order predictor was employed, i.e., p = 5 poles. The 

perceptual pole amplitudes were estimated using the time-

domain approach and the convergence factor µ was taken as 0.3.

i) AEP-matching – In Figure 2(a), the AEPs generated by 

the reconstructed speech signals from the LP, the PLP, the WLP, 

and the PMAP modeling were compared against the AEP 

associated with the input speech. From this figure, it can be 

noted that the AEP obtained from the PMAP matches closely the 

reference AEP. On the other hand, the AEPs generated by the 

LP, the PLP and the WLP differ from the reference AEP. In 

order to clearly differentiate the performance of the PMAP 

approach from the others, in Figure 2(b), we compare the AEPs 

generated by the prediction residuals of these methods against a 

random white Gaussian stimulus with noise floor -30dB. Results 

that further validate and justify the selection criteria used in the 

ESW methodology are given in [11]. Also note that the ESW 

methodology does not seek to satisfy a noise threshold criteria, 

but guarantees maximal matching between the modeled and the 

original excitation patterns. 

ii) Exact formant frequency estimation – Given the success 

of the ESW methodology to rank and select the perceptually-

relevant pole frequencies, the PMAP modeling yields accurate 

information regarding the formant frequencies and bandwidths. 

An example that illustrates this was presented earlier in section 

1, Figure 1. The PMAP approach also yields an improved 

spectral fitting, especially, at the perceptually-relevant formant 

regions and compares well against the symmetric LP method 

proposed in [3]. 

iii) Spectral envelope modeling and whitening – The PSDs 

of the speech frame, the LP residual, the WLP prediction error, 

and the PMAP residual are shown in  Figure 4(a) through (d), 

respectively. Note that the WLP residual was filtered using 
1 1 2

0 ( ) (1 ) /( 1 )D z z  [9] in order to allow for reasonable 

comparisons. From this figure, it is clear that both the WLP and 

the PMAP filter can pick out most of the peaks at low 

frequencies because of the perceptual constraints employed. On 

the other hand, the conventional LP provides equal emphasis to 

all frequencies in minimizing the error energy. Also, note that 

the update equations given in (6)-(8) were derived by 

reformulating the conventional LP for a cascade LP case. 

Therefore, the use of the ESW methodology for estimating the 

pole frequencies and the time-domain iterative algorithm for 

computing the pole amplitudes results in an efficient modeling 

of the spectral peaks and in maintaining the whitening property. 

iv) Speech analysis/synthesis and integration of the PMAP 

modeling in the ITU-T G.729 speech standard – Figure 5 

presents a comparison of the prediction residuals obtained from 

the PLP, the WLP, and the PMAP modeling. The results 

(a)

(b)

Figure 2. (a) AEPs generated by the input speech segment, the 

LP reconstructed speech (RS), the PLP RS, the WLP RS, and 

the PMAP RS; (b) AEPs associated with the prediction errors 

from the LP, the PLP the WLP, and the PMAP modeling. 
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achieved with the voiced speech segments were consistent with 

the unvoiced case as well. As a preliminary testing, we replaced 

the conventional LP in the ITU-T G.729 standard [5] with the 

PMAP modeling. The experiments consistently revealed that, 

relative to the LP, the PMAP modeling reduces the prediction 

error energy significantly; therefore, requiring fewer bits to 

model the residual. In general, a gain of 5-6 bits per frame (80 

samples in the ITU-T G.729) was noted. 

4. COMPUTATIONAL COMPLEXITY AND 

CONCLUDING REMARKS 

It has been pointed out in [9] that relative to the 

conventional LP, the WLP requires approximately 2-3 times 

more computations for calculating the autocorrelations and 4-8 

times for implementing the warped synthesis filter. The PMAP 

modeling involves the following computations: estimating a 

candidate set of K sinusoids, selecting p perceptual pole 

frequencies, and computing the corresponding pole amplitudes. 

In general, 5-10 iterations are sufficient to compute the pole 

amplitudes when µ is set around 0.3 (see Figure 3). Typically, 

the PMAP modeling requires 6-8 times more computations 

relative to the conventional LP. Note that the computations are 

mainly from the two iterative searches performed. A 

computationally fast algorithm that employs perceptual pruning 

techniques [11] can be employed to speed up the pole frequency 

search. Sinusoidal trajectory smoothing techniques and matching 

pursuit algorithms can also be employed to reduce the number of 

iterative searches.

This paper described a method to obtain the perceptually-

relevant pole locations for use in speech analysis-synthesis. An 

AEP-matching method was employed to estimate the 

“perceptual poles.” Results that justify the use of the AEP 

matching method to estimate the perceptual poles were given. 

Experiments that demonstrate the improved speech 

reconstruction quality and accurate estimation of the formant 

frequencies were presented.
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Figure 3. Normalized error energy 

(NEE) convergence for various 

values of µ

Figure 4. PSD of (a) the input speech, (b) the LP 

residual, (c) the WLP residual, and (d) the PMAP 

residual.

Figure 5. Input speech segment and the 

residuals obtained from the PLP, the WLP 

and the PMAP modeling 
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