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ABSTRACT

Typical systems for large vocabulary conversational speech
recognition (LVCSR) have been trained on a few hundred hours of
carefully transcribed acoustic training data. This paper describes
an LVCSR system for the conversational telephone speech (CTS)
task trained on more than 2000 hours of data for which only ap-
proximate transcriptions were available. The challenges of deal-
ing which such a large data set and the accuracy improvements
over the small baseline system are discussed. The effect on both
acoustic and language modelling performance is studied. Over-
all increasing the training data size from 360h to 2200h and opti-
mising the training procedure reduced the word error rate on the
DARPA/NIST 2003 eval set by about 20% relative.

1. INTRODUCTION

Conversational Telephone Speech (CTS, formerly known as Hub5
or Switchboard) is still a hard task for automatic speech recog-
nition. Over the last decade there has been a fairly consistent
research effort by a small number of groups funded by the U.S.
government. The progress in system performance was driven and
monitored by yearly evaluations conducted by DARPA/NIST. The
typical systems entered in these evaluations increased in complex-
ity significantly and steady progress was made (up to about 10%
relative word error rate reduction per year). However, the prob-
lem is far from solved and many researchers felt a more aggressive
approach was needed to accelerate progress. The DARPA EARS
program that began in 2002 offered the opportunity to investigate
more aggressive approaches.

In EARS the main Speech-to-Text contractors (BBN, CUED,
LIMSI, SRI, IBM) decided that a massive increase of the available
acoustic training data would offer the best chance for achieving
significant performance improvements in a short amount of time.

For the last decade the CTS training set consisted of 200-300
hours of carefully transcribed data. It was decided to collect thou-
sands of hours of new data and to experiment with new strategies
to reduce the cost of the manual transcription of the training data.

This paper describes experiments with the first batch of data
that became available in the middle of 2004. This set contained
about 2000 hours of telephone conversation data. The starting
point of the experiments was the Cambridge University CTS sys-
tem described in [1] which was trained on 360h of acoustic data.
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2. CTS TASK & DATA RESOURCES

The CTS data consists of phone conversations between volunteers
on an assigned topic in (American) English. To rapidly increase
the amount of available training data the LDC implemented a new
collection protocol (“Fisher” collection). A detailed discussion of
this new protocol can be found in [2]. About 2000h of new Fisher
data was collected over the last year.

Since the cost of creating careful manual transcriptions would
have been prohibitive it was decided to rely on “quick transcrip-
tions”, which were generated by a commercial transcription ser-
vice and post-processed automatically. BBN employed the tran-
scription service WordWave to produce transcriptions for about
1800h while the LDC produced quick transcriptions for the re-
maining 200h. An overview of the respective procedures can be
found in [3] and [4], respectively.

The following data sets were available for training and testing
the CUHTK CTS system:

h5train03b 360h data set used in 2003 evaluation

fisher3896 520h Fisher data set, 3896 conversations with Word-
Wave quick transcriptions (early version)

fsh2004 1820h, BBN/WordWave + LDC quick transcriptions

fsh2004h5train03b 2180h all available CTS data.

eval03 test 6h set. Fisher and Swb2-5 data, 72 conversations

dev04 test 3h set Fisher, 36 conversations

3. DATA PREPARATION

As usual a certain amount of data cleanup had to be performed
on the audio data and associated transcriptions that were provided
for the Fisher 2004 data. The original transcriptions consisted of
1940h data (1758h BBN data, 182h LDC data). The text was pro-
cessed to normalise spelling and transcription conventions. About
11.000 replacement rules were generated for this purpose (the ma-
jority of these were related to word fragments). Pronunciations
for about 6800 words that occurred at least twice were added to
the CUHTK training dictionaries. About 18h worth of segments
containing new words that only occurred once were discarded.

Forced alignment was performed on all of the new data and
based on this errorful segments were discarded (<30h) and the
length of silence portions at segment boundaries was normalised.
After this processing 1819h of data remained, 1042h from female
speakers and 777h from male speakers.
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4. TRAINING ON QUICK TRANSCRIPTIONS

In order to investigate the impact of using quick transcriptions for
acoustic modelling, a set of experiments was performed based on
20 hours of Switchboard 1 data for which four different sets of
transcriptions were available. The first set were the Mississippi
State University careful transcriptions (MSU). The second set were
LDC quick transcriptions. The third set and the final set were
provided by BBN and used different post-processing strategies of
the WordWave quick transcriptions (“Algorithm I” and “Algorithm
III”, respectively) [3]. These two BBN generated transcriptions
differed in the way that words were assigned to segments and in
the quality checking procedure. Acoustic models were trained us-
ing Maximum Likelihood (ML) and Minimum Phone Error (MPE)
estimation for each of these transcriptions.

dev01 eval03
ML MPE ML MPE

MSU 43.4 40.5 43.5 40.5
LDC QT 43.6 41.2 43.8 41.2
BBN WWave1 43.6 41.2 44.0 41.4
BBN WWave3 43.4 40.8 43.6 40.8

Table 1. %WER, unadapted, trigram, ML and MPE models

From table 1, it can be seen that using quick transcriptions
causes an increase in word error rate. This can be explained by
the larger number of transcription errors that occur in the quick
transcriptions. Another observation is that MPE discriminative
training is more sensitive to transcription quality than ML training.
An encouraging result is that there is only a small performance
gap between the models trained using the BBN “Algorithm III”
Word Wave quick transcriptions and the MSU careful transcrip-
tions. Based on these results and similar findings using BBN’s
ML training procedure it was decided to transcribe the whole new
Fisher collection data using the quick transcription methodology.

5. LANGUAGE MODELLING

The Language Models used in the CUHTK systems are simple
word-based n-gram models. Typically separate n-grams are trained
on different text corpora and then interpolated together with the
interpolation weights optimised on a development test set. The re-
sulting LM is pruned using entropy-based pruning [5]. The com-
ponents trained on smaller corpora (fewer than 20M words) are
trained using Kneser-Ney discounting while Good-Turing discount-
ing was used for the larger LMs.. The baseline language model in
this paper is the interpolated fourgram model used in the 2003 CU-
HTK system [1].

An additional component n-gram was built on the quick tran-
scripts for the Fisher data. An additional data corpus was collected
from the web by Bulyko & Ostendorf [6] by submitting frequent
Fisher n-grams to Google as queries and normalising the returned
pages. As out-of-domain data, transcripts and closed captions of
broadcast news shows were used. Table 2 summarises the LM
training set before and after updating the training texts.

As Table 3 shows, adding the highly relevant in-domain Fisher
2004 training data has a big impact on PP. Adding the new 529MW
Web data decreased PP by another point. While experimenting
with the new texts, it was found that the old (not Fisher-specific)
62MW Web data was redundant. Adding the additional out-of-
domain data did not yield any perplexity improvement.

Training Text Size (MW) Weight

BN texts 427 → 488 0.23 → 0.05
cell1 0.2 0.11 → 0.02
che+swbdI 3.2 0.29 → 0.04
swbdII 0.9 0.23 → 0.05
Fisher 2004 0 → 21 0 → 0.67
Web 62 → 529 0.14 → 0.17

Table 2. Interpolation weights optimised on dev04. Training text
size and weights before → after updating the training set.

Language Model Weights optimised on Perplexity

fgint03 dev01+eval00,01,02 62.0
fgint03 dev04 61.7
Fsh only – 55.7
fgint03+Fsh dev04 52.8
fgint03+Fsh+web dev04 51.7
fgint03+Fsh+web+BN dev04 51.7

Table 3. Perplexities of word 4-grams on dev04.

6. ACOUSTIC MODEL TRAINING STRATEGY

Due to the large amount of training it wasn’t feasible to perform
all experiments on the full data set. Instead a training strategy
was adopted where initial experiments were conducted on subsets
of the data.First of all the entire data set was pre-processed and
prepared for use in experiments. This included cleaning up the
transcriptions, aligning the data and determining VTLN warp fac-
tors. During this process a number of issues with the software and
the general infrastructure were discovered and fixed (some of these
issues are discussed in the following section).

A manageable subset of the data was selected for fast-turnaround
experiments. Conversations were selected to yield a 400h subset
(fsh2004sub) that was balanced for speakers’ gender, conversa-
tion topics and had the same distribution of phone line conditions
as the test data (25% cellular). Baseline ML and MPE models
were built on this data subset to allow the investigation of ad-
vanced acoustic modelling techniques (see the companion paper
[7] for details). Concurrently further models were built on larger
data subsets (fsh2004sub2: 800h) and finally the whole data
set (fsh2004h5train03b).

7. COMPUTATIONAL ISSUES

During the training setup a number of computational issues were
encountered. The complete training set consists of:

• 2,180 hours (785 million frames)

• 30,660 conversation sides

• 1,803,682 segments

• 24.6 million words

Performing the acoustic training on this data set takes a large
amount of compute time. For a standard triphone model set (9k
state, 36mix) one ML training iteration takes 216 CPU hours (0.1xRT).
The lattice generation for discriminative training takes more than
1 CPU year (4xRT) and one MPE iteration takes 880 CPU hours
(0.4xRT). The training was performed on a compute cluster con-
sisting of about 100 CPUs (2.4-3.2 GHz Pentium 4) running Linux.
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Apart from the run time another challenge is the size of the
data files involved in the training. To cope with the file server/network
load a high-performance file server with Gigabit Ethernet (3.6 TB
RAID5 storage) was used. The PLP feature files for full data set
(2000+h stereo data) take 48GB. One set of lattices for discrimi-
native training takes 89 GB. Each model set takes 100 MB.

8. ACOUSTIC MODELS

8.1. Baseline models

As a starting point and to verify the general setup baseline acoustic
models were built on the 400h fsh2004sub data set. These triphone
models use the same number of parameters as previous h5train03b
models (6k tied states, 28 mixture components per state). Both
ML and MPE models were trained.

From the fsh04subresults in table 4 it can be seen that new
Fisher 400h set gives very similar performance to the old 520h set,
which had lower transcription quality. Overall there was a WER
reduction of 1% abs. over the 2003 training set.

To study the effect of using more data the training data size
was increased incrementally. The number of parameters was not
changed relative to the previous experiments. The results in ta-
ble 4 show that while the ML models’ performance only improves
slightly when going beyond 400h of training data, the performance
of the discriminatively trained models continues to improve sub-
stantially. Overall adding 1800h of Fisher to the acoustic training
improves the eval03 WER for ML models by 1.5% abs. and for
MPE models by 3.1% abs.

eval03 03Sw 03Fi dev04

ML h5train03b 360h 31.7 36.1 27.1 28.1
ML fisher3896 520h 30.8 34.7 26.6 26.9
ML fsh04sub 400h 30.8 34.6 26.7 26.8
ML fsh04sub2 800h 30.5 34.4 26.4 26.5
ML fsh04h5t03b 2200h 30.2 34.1 26.0 26.4
MPE h5train03b 360h 27.3 31.6 22.7 23.7
MPE fisher3896 520h 26.2 30.0 22.2 22.3
MPE fsh04sub 400h 25.9 29.6 21.9 21.9
MPE fsh04sub2 800h 25.1 28.9 21.1 21.3
MPE fsh04h5t03b 2200h 24.2 27.9 20.2 20.5

Table 4. %WER on eval03 and dev04, unadapted, 2003 trigram

8.2. Adapted models

To test these models with adaptation and the new LM the CUHTK
5xRT system (“P1-P2” system, see [8]) was rebuilt with the new
models. In this system a very fast first pass (P1) produces an ini-
tial transcription that is used to perform VTLN and unsupervised
speaker adaptation. In the second pass (P2) the adapted models are
used to produce lattices on which confusion network decoding is
performed.

From table 5 it can be seen that adding the Fisher data to the
LM reduces the word error rate with last year’s acoustic models
by 1.3% abs. (1.6% on Fisher). Using 400h of Fisher data yield
0.6% lower WER than using last year’s training data. Doubling
the amount of Fisher data gives an additional 0.7%. The total WER
reduction from adding Fisher data to the old 2003 data for acoustic
and LM training is 3.3% abs. (2.9% on Fisher)

model LM eval03 03Sw 03Fi

h5train03b 360h LM03 24.6 28.7 20.2
h5train03b 360h LM03+fsh 23.3 27.6 18.6
fsh04sub 400h LM03+fsh 22.7 26.7 18.4
fsh04sub2 800h LM03+fsh 22.0 25.9 17.8
fsh04h5t03b 2200h LM03 + fsh 21.3 25.1 17.3

Table 5. eval03 %WER, 5xRT P1-P2 system,MPE, word 4-gram

8.3. More Parameters

An obvious shortcoming in the above experiments is that the num-
ber of Gaussians in the acoustic model was kept fixed while the
training data set was increased by a factor of six. Ways of in-
creasing the number of parameters were investigated. The standard
HTK model training procedure relies on iterative mixture splitting
where the Gaussian with the highest mixture weight in each state
is split. An alternative criterion was sought that would also take
the variances of the Gaussians into account. The mixtures in each
state were ranked separately based on the weights and the covari-
ance determinant values. The Gaussian with the highest average
rank was picked as a candidate for splitting.

System Comp eval03 eval03Sw eval03Fi

Baseline
32

30.9 34.8 26.7
rank-based 30.7 34.6 26.5
Baseline

36
30.7 34.5 26.6

rank-based 30.4 34.4 26.1

Table 6. %WER on eval03 for MLE fsh2004sub models with
different mixup criteria

Table 6 compares the performance of the two mixing-up cri-
teria. The training was started from a 16 component fsh2004sub
system. The rank-based strategy outperforms the conventional ap-
proach and it was decided to build models on the full data set with
9k states and 36 mixture components using the rank-based crite-
rion.

9. PRIORS IN MPE TRAINING

9.1. MMI priors for robust training

MPE training is susceptible to over-training. I-smoothing distri-
bution, with a form of normal-wishart distribution as MAP, are
then introduced to obtain robust MPE training and improve gen-
eralisation ability. The prior parameters of the I-smoothing dis-
tribution act as back-off values of the MPE estimate, which may
significantly affect the performance of MPE training. The selec-
tion of priors is a key issue, in particular mean and variance pri-
ors. In standard MPE training, ML estimates of mean and vari-
ance are used as the priors. As the priors are generated on-the-
fly in terms of sufficient statistics, they are referred to as dynamic
priors. Considering that better back-off values may yield better
performance, dynamic MMI priors may be used instead of the dy-
namic ML prior. For large amount of training data, the dynamic
MMI prior is likely to be robust. To obtain dynamic MMI pri-
ors, ML statistics (equivalent to MMI numerator statistics) and
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MMI denominator statistics are needed. A comparison between
dynamic MMI prior to standard dynamic ML prior is shown in ta-
ble 7 where MPE-τ I is the manually selected value representing
the equivalent“occupancy” of the MPE I-smoothing prior, while
MMI-τ I is for MMI I-smoothing prior. The dynamic MMI prior
outperformed dynamic ML prior, especially on the fisher part of
the dataset. Therefore, dynamic MMI prior were employed in all
following experiments.

MPE Prior MPE-τ I MMI-τ I eval03 03Sw 03Fi

Dyn. ML 50 — 26.3 29.9 22.5
Dyn. MMI 75 0 25.9 29.6 21.9

Table 7. %WER on eval03 for MPE models trained on
fsh2004sub, unadapted, 2003 trigram

9.2. Gender-dependent MPE training

Gender-dependent MPE training is done on top of the well trained
MPE-GI model. Since GD MPE training is even more suscepti-
ble over-training only mean and Gaussian mixture weights were
updated and more conservative priors were used. Parameters of
MPE-GI model were used as the I-smoothing priors, which can
be referred to as the static prior. As the static prior is not up-
dated during MPE training, it should be more robust than a dy-
namic prior.

Table 8 shows the performance of the GD MPE model com-
pared with the GI MPE in the 5xRT system which includes adap-
tation.

System MPE Prior eval03 Male Female

MPE-GI Dynamic MMI 22.7 24.0 21.4
MPE-GD MPE-GI model 22.4 23.8 21.0

Table 8. %WER on eval03, fsh2004sub models, adapted,
LM03+Fsh 4-gram, P1-P2 system

10. OVERALL PERFORMANCE

All the changes discussed above were put together and the result-
ing models were tested in the framework of the CUHTK 5xRT
system. Table 9 shows the performance on eval03 with adapted
models, a fourgram LM and confusion network decoding.

eval03 03Sw 03Fi

h5train03b(360h) LM03 23.8 27.8 19.5
fsh2004h5t03b 6k +fsh 20.7 24.5 16.7
fsh2004h5t03b.9k +fsh 19.9 23.4 16.2
fsh2004h5t03b.9k.GD +fsh 19.6 23.1 15.8
fsh2004h5t03b.9k.GD +fsh+web 19.4 22.9 15.6

Table 9. %WER on eval03, adapted MPE models, word 4-
gram+CN, 5xRT P1-P2 system

The results indicate that the use of more parameters in the
acoustic model, gender dependent modelling and the inclusion of
web data in the LM yields a further 1.3% abs. decrease in WER.
Overall performance was improved by 4.4% abs. over last year’s
models. One of the concerns with training on large amounts of

Fisher data which have a fairly limited set of topics is that the re-
sulting models are tuned specifically for Fisher data. As a test
the new Fisher-trained models were tested on the 2000 eval data
set which contained both very hard Callhome and relatively easy
Switchboard 1 data. The results are shown in table 10. The perfor-
mance improvement is consistent across the subsets.

system run time WER CHE Swb1

2000 cuhtk1 eval 255xRT 25.4 31.4 19.3
2004 P1-P2 fsh04h5t03b 5xRT 19.6 24.5 14.8

Table 10. %WER on eval00 set (manual segmentation) with 2000
system and 2004 P1-P2 system

11. CONCLUSIONS

This paper discussed the issues in training LVCSR systems on
large amounts of data. The creation of infrastructure for large
scale experiments on the 2200 hour data set was described. Over-
all WER on eval03 was reduced by 4.4% abs. in a 5xRT system by
adding 1800h Fisher data for acoustic and LM training and opti-
mising the training procedures. From these performance numbers
it is clear the the aggressive Fisher data collection combined with
the quick transcription methodology was a very good investment
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