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ABSTRACT

This paper describes the technical advances in IBM’s con-

versational telephony submission to the DARPA-sponsored 2004

Rich Transcription evaluation (RT-04). These advances include

a system architecture based on cross-adaptation; a new form of
feature-based MPE training; the use of a full-scale discrimina-

tively trained full covariance gaussian system; the use of septa-

phone cross-word acoustic context in static decoding graphs; and

the incorporation of 2100 hours of training data in every system
component. These advances reduced the error rate by approxi-

mately 21% relative, on the 2003 test set, over the best-performing

system in last year’s evaluation, and produced the best results on

the RT-04 current and progress CTS data.

1. INTRODUCTION

One of the goals of the DARPA EARS program is to reduce the

word error rate of transcribing telephone conversations to below

10%, and in support of this goal, NIST conducts periodic evalua-

tions. This paper describes the IBM recognition system that was
submitted to the 2004 evaluation, with special emphasis on newly

developed techniques. Although the primary focus condition was

on systems running in 20 times real-time, this paper focuses on

IBM’s 10xRT submission, which is somewhat more streamlined,

and essentially as accurate.
The key design characteristics of the system include the fol-

lowing:

• A novel feature-space transform, termed fMPE, that is

trained to maximize the MPE objective function. The
fMPE transform operates by projecting from a very high-

dimensional, sparse feature space derived from Gaussian

posteriors to the normal recognition feature space and and

adding the projected posteriors to the standard features.
A system that uses fMPE+MPE training is better than a

system using MPE alone by approximately 1.6% absolute,

measured on the RT-03 test set.

• The use of a large, discriminatively trained full-covariance

system having 143K 39-dimensional models. Using our

fast decoding framework, decoding with this system re-
quires 3.32 xRT.

• Static decoding graphs that use septaphone context, with
both left and right cross-word context.

• System combination through cross-adaptation instead of
acoustic rescoring of lattices. A cascade of speaker-adapted

systems is used, with the output of one system being used to

estimate the speaker-adaptive transforms for the next. This

cascade consists of:
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1. a 150K Gaussian quinphone PLP speaker-

independent system trained with MPE (all other

systems are speaker adaptive);

2. a 143K full-covariance Gaussian quinphone system

built on fMPE features and trained with implicit-

lattice MMI; and

3. a 849K Gaussian septaphone PLP system trained

with fMPE followed by traditional model-space

MPE.

• Training of all system components on all available Fisher

data.

2. A CROSS-ADAPTATION ARCHITECTURE

The 2004 IBM Rich Transcription system is organized around sys-

tem combination through cross-adaptation. In common with typi-
cal evaluation systems [1, 2, 3], several different recognition sys-

tems are used in combination to produce the final output. Whereas

typically this is done by generating lattices with one system and

rescoring them with other systems, all communication in the 2004
IBM architecture is done through cross-adaptation. The sequence

of acoustic models and decoding steps is described below.

The following acoustic models are used in the recognition pro-

cess:

1. SI.DC.PLP: A speaker-independent model having 150K

40-dim diagonal-covariance mixture components and 8.0K

quinphone context-dependent states, trained with MPE.
Recognition features are derived from an LDA+MLLT pro-

jection from 9 frames of spliced, speaker-independent PLP

features with blind cepstral mean normalization.

2. SA.FC.fMPE: A speaker-adaptive model having 143K 39-

dim full-covariance mixture components and 7.5K quin-

phone context-dependent states, trained with MMI and

fMLLR-SAT. Recognition features are derived from fMPE
on an LDA+MLLT projection from 9 frames of spliced,

VTLN PLP features with speech-based cepstral mean and

variance normalization.

3. SA.DC.fMPE+MPE: A speaker-adaptive model having

849K 39-dim diagonal-covariance mixture components and

22K septaphone context-dependent states, trained with both
fMPE and MPE, and fMLLR-SAT. Recognition features are

derived from fMPE on an LDA+MLLT projection from 9

frames of spliced, VTLN PLP features with speech-based

cepstral mean and variance normalization.

Processing of the speech then employs the following steps:

1. Segmentation of the audio into speech and non-speech.

I - 2050-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



2. Decoding with the SI.DC.PLP model.

3. Speaker adaptation and decoding with the SA.FC.fMPE
model:

(a) Estimation of speech-based cepstral mean and vari-

ance normalization and VTLN warping factors using

the hypotheses from (2).

(b) Estimation of fMPE, fMLLR and MLLR transforms
for the SA.FC.fMPE model using the hypotheses

from (2).

(c) Decoding with the SA.FC.fMPE model.

4. Reestimation of speaker adaptive transforms and decoding

with the SA.DC.fMPE+mMPE model:

(a) Estimation of MLLR transforms using the features
from (3b) and the hypotheses from (3c).

(b) Lattice generation with the SA.DC.fMPE+MPE

model.

5. Lattice rescoring with the LM described in Section 5.2.

6. Confusion network generation and the extraction of the

consensus path.

The effect of cross-adaptation was studied on a combination
of diagonal and full covariance models (table 1). Adapting the DC

models on the errorful transcripts of the FC system led to a gain of

0.4% compared with self adaptation.

models/transcripts FC DC

FC 21.9 21.2

DC 21.0 21.4

Table 1. Error rates on RT-03. Comparison between Self- and

Cross-Adaptation.

3. FMPE

The IBM evaluation system employs three forms of discriminative

training. This section first mentions two traditional forms of dis-

criminative training, and then presents a novel feature-based tech-

nique that is described fully in a companion paper [4].
The first form of discriminative training is implicit-lattice

MMI, in which the denominator counts are collected by running

a pruned forward-backward pass over a statically compiled de-

coding graph [5]. While each iteration of implicit-lattice MMI
takes longer than a comparable pass of lattice-based MMI, the disk

requirements of the implicit lattice technique are much smaller,

which is advantageous when working with a large training set [6].

The second form of traditional discriminative training is
MPE [7, 8]. This process used a lattice-based framework; in our

implementation, lattices with fixed state alignments were used.

Novel features include training with a pruned bigram language

model with about 150K bigrams, instead of a unigram language

model. The statistics in the MPE training were averaged over four
sets of acoustic and language model weights, with the acoustic

weight being either 0.10 or 0.16 and the language model weight

being either 1.0 or 1.6. Experiments on a different data set indi-

cated that this averaging may help when bigram lattices are used.
In I-smoothing, the MMI rather than ML estimates of parameters

were used for backing off. Also, during the update phase all vari-

ances were floored to the 20th percentile of the distribution of all

variances in the appropriate dimension.

In addition to these traditional forms of discriminative train-

ing, the 2004 IBM system introduced a novel form of discrimi-

native modeling, fMPE. This is a global discriminatively trained
feature projection which works by projecting very high dimen-

sional features based on posteriors of Gaussians down to the nor-

mal recognition feature dimension, and adding them to the normal

features.
The technique is fully described in a companion paper [4], but

briefly the process is as follows. A high dimensional feature vector

is formed by evaluating 100,000 gaussians that broadly cover the

input space. The likelihoods are normalized to sum to one, and the
vector is expanded to 700,000 dimensions by appending averages

of the posteriors of preceding and following frames. The feature

projection, which is a matrix of size 700k x 39, is then trained by a

form of gradient descent so as to optimize the MPE objective func-
tion, starting from a zero matrix (note that the features are added

to the LDA+MLLT features so this is a reasonable initialization).

The method of fMPE may be compared with past work us-

ing neural-net posteriors as feature vectors [9]. However, previous
methods either use only transformed posteriors as features, or con-

catenate posterior-derived features and standard recognition fea-

tures. The new method differs in its high dimensionality and use

of discriminative training to obtain a projection matrix.

ML Training MPE fMPE fMPE+MPE

22.1 20.6 20.2 19.2

Table 2. Error rates on the 2003 EARS evaluation set.

Table 2 shows that fMPE reduces the word error rate by ap-
proximately 1.4% over the use of traditional MPE alone. Larger

improvements can be obtained by using multiple layers of fMPE

transform.

4. FULL COVARIANCE MODELING

One of the distinctive elements of IBM’s 2004 system is the use

of a full-scale acoustic model based on full-covariance Gaussians.
Specifically, because of the availability of 2100 hours of training

data (5), it was possible to build an acoustic model with 143,000

39-dimensional full-covariance mixture components. We have

found that full covariance systems are slightly better than similarly
sized diagonal covariance systems, and in addition are beneficial

for cross-adaptation. To construct and use this model, the follow-

ing problems were solved.

• Speed of Gaussian evaluation. Firstly, we based the com-

putations on a Cholesky decomposition of the inverse co-

variance matrix. This allows pruning the likelihood com-

putation for a mixture component as soon as the partial
sum across dimensions falls below a threshold. Secondly,

we used a hierarchical Gaussian evaluation setup described

in [10]. By combining these two approaches, the runtime

for full decoding was brought to 3.3 times real-time with-
out loss in accuracy.

• Discriminative training. Using the speedup just mentioned

with tight beams and a small decoding graph, implicit lat-
tice MMI [5] was easily possible. The following MMI up-

date equations were used for the means and the covariance

matrices:

µ̂
i
=

θnum

i (x) − θden

i (x) + Dµi

θnum

i
− θden

i
+ D

(1)
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Σ̂i =
θnum

i (xx
′) − θden

i (xx
′) + D(µiµ

′

i + Σi)

θnum

i
− θden

i
+ D

− µ̂iµ̂
′

i

(2)
where the θ’s represent the mean, variance and prior statis-

tics for the numerator and the denominator. D is chosen on

a per Gaussian basis such as to ensure that Σ̂i is positive

definite and that its minimum eigenvalue is greater than a
predefined threshold. In adddition, I-smoothing was used

for the numerator counts [7]. The effect of MMI is illus-

trated in table 3 for both standard SAT and SAT-fMPE fea-

tures.

ML Training MMI

SAT 23.2 22.1

SAT-fMPE 21.4 20.0

Table 3. Error rates on the 2003 EARS evaluation set.

• MLLR transform estimation. Only the on-diagonal el-

ements of the covariance matrix were used to estimate

MLLR transforms; this produced WER reductions of ap-

proximately 1% absolute, in line with expectations.

5. TRAINING DATA AND SYSTEM BASICS

5.1. Training Data

5.1.1. Acoustic Model Data

The acoustic training set used data from 5 sources: Fisher parts

1-7, Switchboard-1, BBN/CTRAN Switchboard-2, Switchboard

Cellular, and Callhome English.

The Fisher transcripts were normalized using a collection of
840 rewrite rules, some of which corrected classes of errors. 41

conversation sides in the original collection were rejected because

they had insufficient quantities of data (less than 20 s. of audio),

and an additional 47 hours of data containing words occurring 4
times or less in the whole corpus were rejected.

We used ISIP’s 25 October 2001 release of Switchboard tran-

scripts for the Switchboard-1 data, with a few manual corrections

of transcription errors.
The BBN/CTRAN Switchboard-2 transcripts and LDC tran-

scripts for Switchboard Cellular and Callhome English were nor-

malized to follow internal conventions, and a few manual correc-

tions were made.
In addition, the full collection of audio data was resegmented

such that all training utterances had nominally 15 frames of si-

lence at the beginning and end, and all single-word utterances were

discarded [11]. Following normalization, roughly 2100 hours of

training data remain.

5.1.2. Language Model Data

We used seven data sources for our language model training:

1. SWB - LDC transcripts of Switchboard-1, Switchboard

Cellular and Callhome English.

2. BBN - BBN/CTRAN transcripts of Switchboard-2.

3. BN - Broadcast News transcripts.

4. FSH - Fisher parts 1-7.

5. UW191 - 191M words of ’Switchboard-like’ web data col-

lected by the University of Washington.

6. UW175 - an older collection of 175M words of ’Fisher-like’

web data collected by the University of Washington.

7. UW525 - a newer collection of 525M words of ’Fisher-like’
web data collected by the University of Washington.

5.2. System Basics

We use a recognition lexicon of 30.5K words which was generated

by extending our RT-03 lexicon to cover the 5000 most frequent

words in the Fisher data. The lexicon contains a total of 33K vari-
ants (1.08 variants per word). Pronunciations are primarily derived

from PRONLEX, with the manual addition of a few variants to

cover reduced pronunciations that are common in conversational

American English. Pronunciation variants have weights based on
their unigram counts in a forced alignment of the acoustic training

data.

5.2.1. Acoustic Modeling

The raw acoustic features used for segmentation and recognition

are perceptual linear prediction (PLP) features as described in [10].

No echo cancellation was performed.

The features used by the speaker-independent system are

mean-normalized on a conversation side basis. The features

used by the speaker-adapted systems are mean- and variance-

normalized on a conversation side basis, but normalization statis-
tics are accumulated only for frames labeled as speech in the

speaker-independent pass.

Words are represented using an alphabet of 45 phones. Phones
are represented as three-state, left-to-right HMMs. With the ex-

ception of silence and noise states, the HMM states are context-

dependent, and may be conditioned on either quinphone or septa-

phone context. In all cases, the phonetic context covers both past
and future words. The context-dependent HMM states are clus-

tered into equivalence classes using decision networks.

Context-dependent states are modeled using mixtures of ei-

ther diagonal-covariance or full-covariance Gaussians. For the
diagonal-covariance systems, mixture components are allocated

according to a simple power law, m = min(M, ceil(k ∗ N0.2)),

where m is the number of mixture components allocated to a state,

M is the maximum number of mixtures allocated to any state, N
is the number of frames of data that align to a state in the training

set, and k is a constant that is selected to set the overall number of

mixtures in the acoustic model. Initial maximum-likelihood train-

ing of the diagonal-covariance systems is based on a fixed, forced
alignment of the training data at the state level [11], and uses an

iterative mixture-splitting method to grow the acoustic model from

a single component per state to the full size. Typically, maximum-

likelihood training concludes with one or two passes of Viterbi
training on word graphs. All training passes are performed over

the full 2100-hour acoustic training set.

We use two forms of feature-space normalization, vocal tract

length normalization (VTLN) [12] and feature-space MLLR (fM-
LLR, also known as constrained MLLR) [13], in the context of

speaker-adaptive training to produce canonical acoustic models in

which some of the non-linguistic sources of speech variability have

been reduced.

The VTLN warping is implemented by composing the 21

piecewise linear warping functions with the Mel filterbank to gen-

erate 21 different filterbanks. The warping function is chosen to

maximize the likelihood of frames that align to speech under a
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model that uses a single, full-covariance Gaussian per context-

dependent state to represent the class-conditional distributions of

the static features. Approximate Jacobian compensation of the
likelihoods is performed by adding the log determinant of the sum

of the outer product of the warped cepstra to the average frame

log-likelihood.

We do a single pass of MLLR adaptation for each conversa-

tion side, using a regression tree to generate transforms for differ-

ent sets of mixture components. The regression tree is an 8-level

binary tree that is grown by pooling all of the mixture component
means at the root node, then successively splitting the means at

each node into two classes using a soft form of the k-means algo-

rithm. The MLLR statistics are collected at the leaves of the tree

and propagated up the tree until a minimum occupancy of 3500 is
obtained and a transform is generated.

5.2.2. Language Modeling

The IBM 2004 system uses two language models: a 4.1M n-gram
language model used for constructing static decoding graphs, and

a 100M n-gram language model that is used for lattice rescoring.

Both language models are interpolated back-off 4-gram models

smoothed using modified Kneser-Ney smoothing. The interpola-
tion weights are chosen to optimize perplexity on a held-out set

of 500K words from the Fisher corpus. The interpolation weights

of the decoding graph and rescoring language models are given in

Tables 4.

LM1 LM2

SWB 0.10 0.07

BBN 0.15 0.05

BN 0.05 0.04

FSH 0.55 0.71

UW191 0.15 -

UW175 - 0.02

UW525 - 0.11

Table 4. Interpolation weights for the decoding graph LM (LM1)

and rescoring LM (LM2).

6. FULL SYSTEM RESULTS

Word error rates at the different system stages are presented in

Table 5 for the 2003 test set provided by NIST, and the 2004 de-

velopment set. Numbers are given at the different stages: SI is
speaker-independent decoding; FC is the full-covariance system;

DC is the diagonal covariance fMPE + mMPE system and LN+CN

denotes LM rescoring followed by confusion network generation.

RT03 RT03-FH DEV04 RT-04

SI 28.0 23.2 23.5 26.7

FC 19.7 16.0 16.6 18.8

DC 17.4 14.1 14.5 16.4

LM + CN 16.1 12.4 13.0 15.2

Table 5. Error rates at different system stages.

7. CONCLUSION

This paper has described a simple and effective recognition system

for conversational telephony. Notable features include fMPE, full-

covariance gaussians, the use of septaphone acoustic context, and
system combination through cross-adaptation. Error rates below

15% are reported for EARS conversational telephony test sets.
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