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ABSTRACT

This paper describes an algorithm for efficient building of Weighted
Finite State Transducers for speech recognition when high-order
context-dependent models of order K > 3 (triphones) with tied
states are used. After discussing some inefficiencies of the stan-
dard compilation method which make the use of high-order context-
dependent models cumbersome and sometimes even impossible
because of memory constraints, we show how an algorithm to
build a part of the needed composed transducers directly from the
decision trees in combination with an improved compilation pro-
cess can lead to much faster, simpler and more memory-efficient
compilation. In our case it also resulted in substantially smaller fi-
nal networks. With the described algorithm it is simple to use high-
order full cross-word models with little overhead directly within a
one-pass time-synchronous search, which we test comparing re-
sulting final network sizes, recognition rates and speed on a large,
spontaneous Japanese speech database. Using the proposed algo-
rithm it is possible to do real-time recognition using full cross-
word quinphones with a large acoustic model in about 125MB of
memory at about 9% search error.

1. INTRODUCTION

In almost all speech recognition systems context-dependent (CD)
acoustic models are used since their use reduces assumptions and
improves recognition rates over using context-independent mod-
els. In most cases these are triphones (order K = 3) observing
a context of +/- 1 phone, but higher order models have been in
use as well since it often leads to additional improvements (e.g.
[1]). We observed that especially often occurring words like for
example function words and digits usually benefit from higher-
order models because these words’ high occurrence frequencies in
the training data will often result in unique observation state se-
quences for them when used with decision-tree tied-state acoustic
models. This in turn leads to a higher proportion of parameters
allocated to these often occurring words and therefore usually to
better overall recognition rates.

The main reason for not using models of higher order than
triphones are the difficulties encountered during training and de-
coding. There are some minor practical issues related to training
of CD models of order K > 3 which are briefly discussed below.
The difficult part with respect to high-order CD models is to make
proper use of them during decoding within and in-between words
(cross-word models). For large scale systems higher-order models
are usually used in rescoring passes where the decoding process
is relatively simple because of the limited number of hypotheses

at any time. Among all the methods proposed for decoding with
context-dependent models so far the probably most elegant is the
handling of context-dependency within the Weighted Finite State
Transducer (WFST) framework [2][3][4]. The principal advantage
when using WFSTs is that the decoding process is completely de-
coupled from dealing with context-dependency since the CD mod-
els are compiled in advance into a network that treats context-
independent and context-dependent (cross-word) models of any
order exactly in the same way. The difficulty lies in the compi-
lation process itself when higher order models are used.

In section 2 we first discuss some minor practical problems
when training CD models of high context order. For usage of
these models in a WFST framework we discuss in section 3 the
traditional way of handling CD models, highlight some of its dis-
advantages which can become severe for context-dependent mod-
els of order K = 5 and greater, and then present a more efficient
method which allows to compile WFSTs a lot faster, more memory
efficiently, and in our case, into a lot smaller and therefore more
efficient final networks.

In section 4 we report on results of experiments with different
order models using a large Japanese spontaneous speech database
(CSJ lecture speech corpus) [5] and compare resulting network
sizes, recognition speeds and error rates for different setups, which
show that high-order models can be used without much overhead
right from the start (and not only in a rescoring pass) in a one-pass
time-synchronous search.

2. ISSUES IN HIGH-ORDER CONTEXT-DEPENDENT
MODEL TRAINING

Here we discuss briefly three minor issues when training high-
order CD models: 1) the expansion into context-dependent state-
graphs, 2) the collection of statistics for phonetic decision trees,
and 3) the building of the phonetic decision trees.

• Expansion into context-dependent state-graph: When
forward-backward training is used the occurring phone graphs
during training (containing optional pauses and possibly
multiple pronunciations for ML training, and additionally
all competing hypotheses in case of discriminative training
for the denominator) are in our case expanded on the fly
into their corresponding state-graphs of the required con-
text order. We don’t expand the silence and noise models.

• Collection of statistics for phonetic decision trees (PDTs):
When using the A-set of the lecture speech training data of
the CSJ corpus (230h of speech) the number of occurring
unique contexts for quinphones is about 487k compared to
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only 14k for triphones, and for all of these (times the num-
ber of used states per phone, in our case three) Gaussian
statistics need to be collected and stored, which adds up to
an annoyingly large > 500MB in case of quinphones and
39-dimensional features. We collect the PDT statistics us-
ing Viterbi alignment which can be done fairly quickly (15
min in our case) since it can be distributed over a large num-
ber of machines. In our case summing up the statistics from
all machines takes by far the most time which we reduced
significantly using a hierarchical summation scheme.

• Building the phonetic decision trees: We build one PDT
per phone and state position as used in [6]. In our case a
roughly 5-fold speed-up of the method described in [6] is
achieved by only adding up the “YES” statistics for each
proposed split and calculating the “NO” statistics by sub-
tracting the “YES” statistics from the parent statistics. To
build all decision trees for quinphones using 1.46M Gaus-
sians takes then roughly 15 min.

3. ISSUES IN HIGH-ORDER CONTEXT-DEPENDENT
MODEL USAGE

Decoding with context-dependent models is conceptually simple
in a WFST framework since all information is compiled in advance
(or on-the-fly) into one large WFST taking state IDs as inputs and
producing word IDs as outputs. The difficulty lies in the compila-
tion process itself.

The method described in [2] of building the complete network
mapping state observation IDs to words involves building four sep-
arate transducers first:

• transducer H mapping (sequences of) state IDs to (sequences
of) CD models

• transducer C mapping (sequences of) CD models to (se-
quences of) phones

• transducer L mapping (sequences of) phones to (sequences
of) words, also called the lexicon

• transducer G mapping (sequences of) word IDs to (sequences
of) word IDs with probabilities, also called the grammar or
language model

The three transducers H , C, and L are extended to their deter-
minizable versions H̃ , C̃ and L̃ by introduction of auxiliary sym-
bols as explained in [2]. The four transducers are then compiled
into a single transducer X as follows:

X = fact(πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦ G)))))) (1)

with the occurring operations defined as explained in [2]:

• A ◦ B: weighted composition of A and B

• det(A): weighted determinization of A

• min(A): weighted minimization of A

• πε(A): replacement of auxiliary symbols by ε in A

• fact(A): factorization of A

The method described above needs an FST H mapping state IDs
to CD models and another FST C to map CD models to phones.
The disadvantage of using two separate FSTs is that usually pho-
netic decision trees are used to determine clustered state IDs shared
among many models where CD model names don’t have much

meaning anymore – many different CD models will map to the
same or similar state ID sequences after optimization of the result-
ing network, but this is ignored when building the individual FSTs.
The size of C grows exponentially with the context order K – for
K-phones it has NK−1 states and NK arcs for a phone set of size
N . Even when limiting the size of C and H by using only the
contexts occurring in the dictionary (for high K these will also be
many because of cross-word effects), generation and subsequent
processing of C and H is cumbersome for context order K > 4
and N > 40 and makes it virtually impossible to use CD mod-
els with K > 5 because of memory constraints during the final
optimization stages of (1) when using a large L and G.

It is much more efficient to generate the determinizable com-
position of H and C (H ◦ C) directly from the PDTs as shown
below and attach then the necessary auxiliary symbols. This will
alter the overall compilation process given in [2] and resulted in
our case besides being much faster (total generation time of H ◦C
is only a few seconds for triphones to minutes for quinphones) and
more memory-efficient also in substantially smaller final FSTs of
about 20-25% the original size.

3.1. Direct Construction of Transducer H ◦ C

Transducer H ◦ C mapping sequences of observation state-IDs
directly to context-independent phone sequences is directly con-
structed as shown in the 5-step procedure below assuming context-
order K and number of basic phones N with a total of S phonetic
decision tree leaf nodes altogether. We denote the resulting trans-
ducer as H̃C which includes the auxiliary symbols needed for de-
terminizing its composition with the other transducers L and G in
later composition stages. Concerning implementation complexity,
the 5-step procedure below might look difficult to implement at
first but in fact is rather straightforward and resulted in our case in
only about 400 lines of code.

Step 1: Generation of PDT leaf node bitmaps

For each PDT leaf-node generate a two-dimensional bitmap Bstate

that describes what phone n is allowed at what context-order posi-
tion k, such that bitmap for state s is Bstate

s [n][k] = 1 only when
phone n allowed at position k. This can be done efficiently in a
recursive procedure going down the phonetic decision tree. Each
of the S state bitmaps describes the set of all possible K-phone
order CD models which belong to this PDT leaf node.

position
phone 0 1 2 3 4

a 1 1 0 1 0
a: 0 1 1 0 1
b 1 1 0 1 0
by 0 1 0 1 0
. .
. .
z 0 1 0 1 0

Table 1. State bitmap example for one PDT leaf node for context-
order K = 5 (quinphones). In this example phone a: is the center
phone and for example phone z is only allowed at positions right
before and after the center phone.
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Step 2: Generation of phone bitmaps and their state ID se-
quences

For each phone n generate all possible state ID sequences (usually
three states long) and their corresponding phone bitmaps Bphone

by multiplication (binary AND operation of bitmaps) of all possi-
ble combinations of the state bitmaps for each state position within
that phone. The state bitmaps belonging to each state position
within a phone are Bstate

s1 , Bstate
s2 and Bstate

s3 with the variables
s1, s2 and s3 being all state numbers out of the total S which
belong to the corresponding position and centerphone. If the re-
sulting phone bitmap has at every position k at least one phone
active (at least one ’1’ per column), the corresponding CD model
set has at least one member and therefore is a valid combination.
For three states this can be written for phone n as

Bphone
n,j = Bstate

s1 & Bstate
s2 & Bstate

s3 (2)

∀ s{i} ∈ S(state pos = i, phone = n)

with j being a counter numbering all resulting valid state sequences
for phone n. This step is done efficiently by first generating all
combinations of the first and second state, then filtering out the in-
valid combinations, and then combining the result with the third
state (and so on if more states are used). If not done this way,
the number of combinations grows exponentially with the number
of state positions in the phone and can even for only three states
become lengthy to calculate since the number of leaf nodes for a
specific state position and phone can be up into the hundreds gen-
erating possibly millions of combinations, which will mostly be
invalid. Given a total of a few thousand states S there will be at
most a few hundred to the low thousands (denoted by Jn) valid
state sequences per center phone n.

We store all valid resulting state ID sequences in a hash table
indexed by center phone and counter j per center phone since they
will be needed in later steps again.

Step 3: Generate within-phone connections

Generate the within-phone connections of transducer H̃C for
each resulting valid state ID sequence Bphone

n,j as a simple se-
quence of arcs with state ID as input and ε as output, and add
optionally auxiliary symbol loops (see [2] for their meaning) at
the first state of each sequence.

Step 4: Generate between-phone connections

Generate between-phone connections of H̃C by connecting the
sequences generated in the previous step with arcs having ε as in-
put and the phone of the sequence it is connecting to as output.
To find out which sequences connect to other sequences that are in
fact valid combinations allowed by the original decision tree, mul-
tiply a binary right shifted (symbol ’>>’ in C, C++) version of all
phone bitmaps from step 2 with all non-shifted phone bitmaps – if
the resulting bitmap Bbetween has at least one phone left at all po-
sitions but the first one (there cannot be any phone left at the first
position because it was masked out by the shifted bitmap), then it
is a valid connection. This can be written as

Bbetween
n1,j1,n2,j2 = (Bphone

n1,j1 >> 1) & Bphone
n2,j2 (3)

∀ n1, n2 ∈ N, ∀ j1, j2 ∈ Jn

with the indeces n1 and j1 selecting the phone bitmaps from where
the connection originates and indeces n2 and j2 selecting the phone
bitmaps to where the connection goes.

Step 5: Generate initial/final state connections

Generate initial/final state connections by connecting them to
the sequences for which left/right context is unknown (initial arcs
same as in step 4, final arcs just ε/ε), and optionally leave some
of these out if you want to force recognition to start/stop with only
certain phones.

3.2. New Compilation Process

The overall compilation process (1) needs to change since there
are no separate transducers H and C anymore. It is now:

X = fact(πε(min(det(det(H̃C) ◦ det(L̃ ◦ G))))) (4)

As can be seen it involves separate determinization of H̃C, which
will be very beneficial when tied-state models are used since many
state sequences will share a common beginning, and L̃ ◦G as well
as of their composition det(H̃C) ◦ det(L̃ ◦ G).

4. EXPERIMENTS & RESULTS

We used the A-set (male & female) lecture speech subset (186k ut-
terances, 230h) of the CSJ Japanese spontaneous speech database
for training and test set 1 (10 lectures, 26515 words, perplexity
78.7 for trigram, out-of-vocabulary rate 2.4%) with a 30k dic-
tionary and trigram for testing [5]. Preprocessing is standard 39-
dimensional MFCCs, all states have 16 diagonal Gaussians each.
All models were trained from flat start with an identical training

model size(C) size(det(H̃C)) H̃C
K/S (#nodes/arcs) (#nodes/arcs) time/memory
2/1k 43/1.8k 2k/22k 0.1 sec/6 MB
2/2k 3.1k/35k 0.2 sec/11 MB
3/1k 1.8k/80k 4.4k/16k 0.8 sec/7MB
3/2k 8.6k/25k 2.6 sec/12 MB
3/3k 12k/31k 4.5 sec/18 MB
3/4k 14k/35k 6.2 sec/23MB
3/5k 16k/39k 8.3 sec/29 MB
4/2k 80k/3.4M 12k/36k 4.3 sec/13 MB
4/3k 18k/55k 9.1 sec/19 MB
4/4k 24k/72k 15 sec/24 MB
4/5k 31k/92k 23 sec/30 MB
5/2k 3.4M/147M 18k/60k 10 sec/13 MB
5/3k 31k/99k 31 sec/20 MB
5/4k 45k/142k 57 sec/27 MB
5/5k 58k/184k 94 sec/34 MB

Table 2. Sizes of full C and determinized H̃C without auxiliary
symbols for models with context order K and S states for CSJ test
set 1 conditions with basic phone set size N = 43.

procedure which was known to give non-optimal individual re-
sults (e.g. PDT statistics were collected from only monophone
alignments) but allows fair comparison in a reasonable amount of
time. To avoid search errors, all experiments were run with a large
beam (250).

Tab.2 shows the hypothetical sizes of the full transducer C
and intermediate determinized transducer H̃C in our case using
the proposed algorithm still containing all possible mappings from
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state ID sequences to phone sequences allowed by the acoustic
model. As can be seen, the exponential explosion of the complex-
ity of C is clearly a problem. Also shown is peak memory usage,
which is basically only the static memory for the acoustic model
containing the decision trees, and generation time when using the
proposed algorithm.

For recognition, Tab.3 shows that models of similar complex-
ity produce better results the more context is observed although the
actual absolute improvement in recognition rate is rather small.
Final network size and decoding time increase only moderately
for higher context order due to the large amount of sharing of
CD models and corresponding state sequences. Experiments for

model size(X) LM error RTF
K/S (#arcs) weight
2/1k 2.21M 14 26.9% 4.8
2/2k 2.22M 14 26.8% 5.8
3/1k 2.47M 14 24.8% 6.0
3/2k 2.80M 15 23.3% 6.2
3/3k 3.02M 15 22.8% 6.3
3/4k 3.21M 15 22.7% 6.4
3/5k 3.35M 15 22.6% 6.6
4/2k 2.85M 15 23.2% 6.5
4/3k 3.15M 15 23.0% 6.7
4/4k 3.33M 15 22.6% 6.8
4/5k 3.54M 15 22.5% 7.1
5/2k 3.38M 15 23.2% 7.1
5/3k 3.93M 15 22.7% 8.0
5/4k 4.38M 15 22.5% 8.8
5/5k 4.75M 15 22.1% 9.9
5/3k 346k/816k 15 24.8% 0.99
5/4k 426k/816k 15 24.6% 1.04
5/5k 499k/816k 15 24.3% 1.08

Table 3. Unfactored full network sizes, best LM weights, error
rates and real-time factors for models with context order K and
S states on CSJ test set 1. Sizes in last three rows are listed sep-
arately for H̃C ◦ L and G because they are used here in online-
composition mode.

K = 4, 5 were only possible when using our algorithm to directly
generate H̃C because of the otherwise too large memory and/or
time demands of the standard composition algorithm (1). But even
when the new algorithm was used for K = 3 we observed besides
much faster overall compilation a large reduction in final network
size (of about 75−80%) which showed that our original composi-
tion procedure based on (1) was suboptimal. Peak memory usage
for compiling full networks was about 1 GB.

The last three rows of Tab.2 show that real-time decoding with
full cross-word quinphones is possible at 9% search error using a
reduced beam and on-the-fly composition [7] in less than 125 MB
total memory.

5. SUMMARY

We showed how the direct construction of the transducer mapping
sequences of observation state IDs to sequences of phones from
the phonetic decision trees of a tied-state acoustic model can lead
to a simpler and faster compilation procedure for the final trans-
ducers needed for decoding in speech recognition. The proposed

algorithm makes it easy to use high-order full cross-word context-
dependent models in a one-pass time-synchronous search with lit-
tle overhead compared to the regularly used triphones, which used
to be cumbersome or even impossible for high-order context-de-
pendent models because of memory constraints when the standard
method was used.

In our case, the new algorithm resulted not only in a signifi-
cant simplification of the compilation algorithm, but also in much
smaller and therefore more efficient final networks. We showed
recognition results for a large Japanese spontaneous speech database
(CSJ corpus), which can be decoded in real-time in less then 125
MB total memory using full cross-word quinphones at about 9%
search error in a one-pass search.

The reviewers pointed us to a very interesting paper [8] de-
scribing a slightly different approach for solving the exact same
problem of using high-order CD models in transducers efficiently.
Due to space and time constraints we unfortunately couldn’t com-
pare the two methods exactly, but it seems that our algorithm is
simpler to implement but might be less efficient for very large
models since we make (for simplicity reasons) suboptimal use of
the tree structure. On the other hand, our algorithm can also easily
be used for non-tree-based sharing methods of acoustic states.
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