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ABSTRACT

Polynomial Segment Model (PSM) has opened up an alternative
research direction for acoustic modeling. In our previous papers [1,
2], we proposed efficient incremental likelihood evaluation and
EM training algorithms for PSM, that significantly improve the
speed of PSM training and recognition. In this paper, we shift our
focus to use PSM on large vocabulary recognition. Recognition via
N-best re-scoring shows that PSM models out-performed HMM on
the Sk closed vocabulary Wall Street Journal Nov 92 testset. Our
best PSM model achieved 7.15% WER compare with 7.81% using
16 mixture HMM model. Specifically, we used sub-phonetic PSM
that represents a phoneme as multiple independent segmental units
that allows for more effective model sharing. Also, we derived
and compared different top-down mixture growing approaches that
are orders of magnitude more efficient than previously proposed
bottom-up agglomerative clustering techniques. Experimental re-
sults show that the top-down clustering performs better than the
bottom-up approaches.

1. INTRODUCTION

In recent years, researchers have examined alternatives to the HMM
for representing speech acoustics. One such alternative is the seg-

ment models [3] that is a generalization of HMM. The segment

model explicitly represents the speech dynamics and temporal cor-

relations between frames. Polynomial Segment Model (PSM) [4]

is one type of the segment models that represents the speech acous-

tics by a polynomial function.

While PSM has been applied to many small vocabulary tasks
such as phoneme recognition or classification [1] [2] [5] and has
shown improved performance, limited work has been reported of
using PSM for large vocabulary continuous speech recognition
(LVCSR) [6]. There are several difficulties in applying PSM for
LVCSR. First, because of the segmental assumption, training and
recognition require searching over all possible segment bound-
aries. In addition, the joint modeling of all observations within
a segment typically requires complete re-computation of segment
likelihood when the segment boundary is changed. This increased
computation makes it hard to handle LVCSR which typically in-
volves more modeling units and uses larger amount of training
data. Second, to reduce the number of segmental units, one com-
plete phonetic unit is usually represented by a single segment mak-
ing it harder to share across context dependent models. While us-
ing multiple segments to represent a phonetic unit is possible, it
increases the number of segment boundaries in training and recog-
nition. Third, in order for PSM to work in LVCSR, it is necessary
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to create mixture models [6] and triphone models which have not
been fully explored.

In our previous papers [1, 2], we proposed fast likelihood com-
putation algorithms that significantly improved the PSM recogni-
tion and training efficiency. In addition, we introduced the dy-
namic multi-region PSM with different levels of sharing between
the regions, which ranges from complete independent regions to
shared mean trajectory and variance. One important advantage of
the dynamic multi-region segment model is the data-driven align-
ment between observations and the region boundaries. We have
shown that the new dynamic multi-region model out-performs HMM
and traditional PSM in both phone classification and phone recog-
nition task on the TIMIT corpus.

Mixture PSM was first introduced in [5] using bottom-up clus-
tering approach to initialize the mixture components and this ap-
proach was also used in our previous papers [1, 2]. However,
this approach is too computationally intensive for LVCSR and it
is not clear whether the resulting clusters are suitable for mixtures
in recognition.

In this paper, we extend our previous work to the large vo-
cabulary tasks including the use of fast likelihood computation in
search and training and duration modeling incorporation. To add
flexibility to the model and allow us to draw more resources from
the HMM framework, we use a sub-phonetic PSM that is a spe-
cial case of the dynamic multi-region segment. Furthermore, we
introduce a number of modified K-means approaches and explore
different initialization strategies and distance measures for mixture
model estimation. These clustering approaches are compared with
the bottom-up clustering approach used in our previous paper.

The organization of this paper is as follows. In section 2, the
basic formulation of PSM is presented. In section 3, we outline
the experimental setup using the WSJO (standard SI-84 WSJ train-
set and Nov’92 5000 words evaluation set) and report the HMM
baseline performances. In section 4, the proposed method on clus-
tering triphone model is discussed. In section 5, the performance
and the processing time of the proposed methods are presented and
the paper is concluded in section 6.

2. POLYNOMIAL SEGMENT MODEL

PSM definition and estimation were first derived in [4]. PSM is
defined as,
C=ZvB+E, (1)

where C is a NxD feature matrix for N frames of D dimensional
feature vector. Zy is a N x (R+1) design matrix for a R order
trajectory model that maps the segments of different durations to a
range of 0 to 1 and B is a (R+1) x D parameter model matrix.
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The maximum likelihood estimation of the trajectory parame-
ter matrix B for a speech segment C with N frames is given by,

B =[Zy2Zn]"' ZnC ©)
and the corresponding residue error covariance is given by
(C—ZnB) (C — ZnB)

N

The triplet {B, £, N } can be viewed as the sufficient statistics
for C. For a set of segments C1,...,C'kx of model m, the maximum
likelihood estimation for the PSM parameter matrix B,, and the
residue covariance 3., are given by

Y=

3

-1

K K
B, = Z Zn, Zn, Z Zy, Cr )
k=1 k=1
and
¢, = Ziy(Cn = 20 Bn) (Co = ZnyBm) o

25:1 Ni

The likelihood of segment C; against model m (with mean
B, and variance X,,) can be evaluated using the segment’s suffi-
cient statistics, { Bj, X;, N; } and is given by,

L(B},%j|Bm, Sm) = ©)
—%[Dlog(?w) +log|Sm] - %tr[z;fij]

0 X o
—5trlZn; (Bj - Bu)E,' (Bj = Bu)'Zn,].

3. EXPERIMENTAL SETUP AND BASELINES

In this paper, LVCSR experiments were performed on the ARPA
Wall Street Journal (WSJ) 5k word task [7]. The models were
trained using the standard SI-84 train set with 7138 utterances and
tested on the Nov’92 5000 word evaluation set with 330 utter-
ances. This training and testing setup is also consistent with the
one used in the Aurora 4 corpus [8]. All experiments were per-
formed using Mel-frequency cepstral coefficients(MFCC) with 39
dimension after applying cepstral mean subtraction(CMS). Three
states left-to-right cross-word HMM triphone models were trained
using the EM-algorithm. The HMM baseline results are gener-
ated using HTK (version 3.2). Triphones states were tied using
the decision-tree clustering technique resulting in a total of 3185
tied states. The HMM training and decoding procedure and set-
tings were similar to [9], with bigram language model was used.
This makes our experiment comparable with other published WSJ
results [10, 11].

For PSM, 3 independent sub-phonetic segments were used to
model each phoneme which can be viewed as a special case of
the dynamic multi-region PSM [2]. Because of using 3-segment
per phoneme, only first order PSM (linear) was used instead of the
more commonly used second order (quadratic) model. To allow
easy comparison between HMM and PSM, both models used the
same MFCC features. In addition, the HMM triphone state tying
tree was also applied to tied PSM sub-phonetic segments across
different triphones. While this is not optimal, this simplifies our
implementation. The PSM segment alignment was initialized by
using the phoneme alignment generated by using a single mixture

HMM model. Similar to the HMM, the pruning threshold, the
grammar weight and the insertion penalty were tuned empirically.
For simplicity, PSM models were trained using Viterbi training
instead of E-M training.

While it is possible to perform a full PSM search, our current
PSM implementation does not support cross-word triphone which
gives better performance on this task. PSM recognition was per-
formed using N-Best rescoring with N-best generated from HMM
models. However, different from other rescoring work [6], the
HMM alignment is not used. Instead, a full search for optimal
segment boundaries was performed using the fast PSM computa-
tion [2]. Results tabulated in Table 2 used a N-Best size of 10 with
a Gaussian duration model.

Number of mixtures 1 2 4 8
WER (%) 14.09 | 11.92 | 9.64 | 8.80

Table 1. Baseline result on WSJ using HMM with different number
of mixtures

Table 1 summarizes the baseline performance on the WSJO
tasks using HMM. We further improve the baseline by performing
the endpoint process on the training data and increase the mixture
to 16, our best HMM baseline achieve 7.81% WER which is com-
parable with [10, 11].

4. CLUSTERING FOR MIXTURE DENSITY MODEL

Mixture models are often used to capture speech variations. E-M
re-estimation formulation for mixture PSM was derived in [4] and
generalized in [12]. For the E-M training to be efficient, good mix-
ture initializations are needed. In HMM models, binary splitting
and K-mean clustering are often used to initialize the mixtures. In
PSM, however, the most commonly used approach is the bottom-
up clustering based on the pairwise, likelihood-ratio distance be-
tween segments pairs [5], which was also used in our previous
work [2]. However, the computation can become very intensive
for LVCSR. Therefore, we investigate several top-down clustering
techniques based on the K-means clustering algorithm similar to
what is applied in HMM.

4.1. Bottom-up Clustering

As described in [5], the distance between 2 segments can be mea-
sured using the likelihood ratio of whether the two segments are
generated by the same model or being generated by two distinct
models. Given two segments X, Y, and their corresponding suffi-
cient statistics { Bx,Xx, Nx } and { By, Xy, Ny }, the likeli-
hood ratio distance [5] is,

Nx + Ny

drras(X,Y) = 5

log |I+W™'S| 7

_ NxEx+Ny3y : sadivi
where W = i s the weighted average of the individ-

ual variances, B is the mean trajectory and S is the covariance of
this joint model of X and Y. S can be expressed as:

(ZxBx — ZxB)'(ZxBx — ZxB)

S = . 8
Nx + Ny ®

Based on all the pairwise distances, one can then use bottom-
up agglomerative clustering to construct a dendogram (clustering
tree). This dendogram can then be cut to obtain the desired number
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of clusters. Once all the data is partitioned into different clusters,
the segments within a cluster are considered to have a common tra-
jectory and are combined to form the initial mixture models. Be-
cause the pairwise distances between all segments are computed,
the number of distance computations is of order O(N?) where N
is the number of segments in a cluster. To reduce computation, the
covariances X x and Xy can be assumed to be diagonal.

There are two issues with this mixture initialization in LVCSR.
First, there are a large number of models (3000 triphone-states)
that require separate clustering. Many of these triphone states con-
tain a large number of segments in which O(N?) distances are too
intensive to compute. While one can use a subset of segments
for clustering, it may affect the quality of the resulting clusters.
The second issue is the difficulty in cutting the dendogram into
the right clusters for mixtures. While the clusters produced do
group together “similar” segments; sometimes, some clusters are
similar to each other resulting in some mixture components with
very small weights. Unlike the splitting algorithm used in HMM
in which a mixture with very small weight can be removed and
replaced by splitting the component with the largest weights, the
bottom-up approach does not provide an obvious mechanism for
increasing the number of mixtures after the dendogram is cut.

4.2. K-means Clustering

An alternative to the agglomerative clustering is the K-mean clus-
tering which involves two steps: 1) the assignment of data to the
nearest centroid, and 2) the estimation of a centroid given a set of
data. If the data is in Eucludian space, it is well-known that us-
ing Eucludian distance in step (1) and data average in step (2) can
minimize the total square error.

For PSM, all the triphone instances can be represented by their
sufficient statistics {Bj, 3;, N; }. Since B; determines the shape
of the trajectory, we can simplify the problem by ignoring ¥ by
assuming them to be the identity matrix. That is, we focus on
clustering segments that have similar B;.

The square error between an N-frame PSM segment with mean
Bj and another segment mean B,, is given by:

d(j,m) = tr[Zy;(Bj — Bn)(Bj — Bm)' Zn;]. (9

As shown in [5], for a given set of segments means, {By},1 <
k < K, the maximum likelihood (or equivalently when using
identity matrix as covariance), the minimum square error centroid
is given by

-1

Bn = ; (10

K ’ K’ ’
> 242 > 24ZBy
k=1 k=1

By using Equation 9 for distance computation and Equation 10 to
re-estimate the centroid, we can form the minimum square error
clustering. Because the total square error would always decrease
in both steps, the algorithm converges.

However, the computation of Equation 9 can still be intensive
because of the per-segment re-scaling. If we consider the two tra-
jectories as continuous time functions, then, we can formulate the
square error function between the two polynomials which is also
a polynomial. Instead of sampling the polynomials by Z, to com-
pute the total point-wise distance, it can be approximated by the
integral of this square error function which is easy to compute.
That is,

d(k:,m) = NkZ/l (BdJc(t)—Bd,m(t))th, (11)
- Jo

where D is the dimension of the feature vector, By, (t) and By, 1 (t)
are the polynomials with the d-th rows of the By, and B,,, matrices
respectively as coefficients. We called this the integral distance.
This approximation is more accurate for longer segments.
Alternatively, one can consider By’s as data points in Euclu-
dian space. Suppose we denote v(By) as the vectorized form
of By, by concatenating its columns. That is, if By contains [

columns, By, = [By,1,. .., Bk, then,
By

’U(B;,;) = :
By,

>

We also denote the conversion of the vectorized Bj back to the
matrix form as ¢v. That is sv(v(By)) = Bj. Then, one can use
the simple K-means algorithm to cluster the data. We call this the
vectorized distance.

4.3. Top-down Clustering

However, K-means clustering would require initial estimate of the
centroids. The idea of top-down clustering is to combine all the
data into a single cluster and then progressively increase the num-
ber of clusters as needed.

To apply the top-down clustering on PSM, we would need to
design a way to split a centroid into two. The vectorized param-
eters provide a handy solution. For each cluster, say, cluster m,
with K, segments, in addition to estimating the centroid, we can
also estimate the variance of B,,, denoted as ,,, by

S ((0(Bi) — v(B)) (v(B;) — v(Bw)))
Km

S = diag| ] (12)

Then, using the iv notation defined above, a centroid B,,, can be
split into By, +, B, —, the new centroids. That is,

Bt = ww(Bn)+eSm) 13)
B, = iw(v(Bn)—€eZn), (14)

where € is a small constant.

5. EXPERIMENTS

In our first experiment, we evaluated the PSM performance using
single mixture which gave a WER of 13.1% which is 7% better
than HMM with 1 mixture. We then proceed to compare the HMM
and PSM system with mixtures using different mixture initializa-
tion schemes. We compared five different clustering approaches:

1. Method 1 Likelihood ratio based distance bottom-up clus-
tering with full covariance.

2. Method 2 Likelihood ratio based distance bottom-up clus-
tering with diagonal covariance.

3. Method 3 Top-down clustering using integral distance.
4. Method 4 Top-down clustering using vectorized distance.

5. Method 5 K-means clustering with 5 random initialization
with the vectorized distance.

For method 1 and 2, to reduce computation, only 500 segments per
triphone state are used in clustering.

Table 2 summarizes the recognition performance of the five
mixture initialization methods in terms of WER in column 2, the
relative improvement over the HMM model of the same number
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model WER | Relative imp. | Clust. time
HMM (2mix) 11.92% - -
PSM (method 1) | 10.46% 12.2% 6.5 weeks
PSM (method 2) | 10.23% 14.2% 3 weeks
PSM (method 3) | 10.01% 19% 2 hrs
PSM (method 4) | 10.18% 14.6% 1 hrs
PSM (method 5) | 10.07% 15.5% 5 hrs

Table 2. Result on WSJO N-Best Rescoring with mixture model.

of mixtures in column 3 and the processing time in column 4.
More than 12% relative improvement is achieved using either ap-
proaches. Among the five methods, method 3, which coupled bi-
nary splitting with a K-means algorithm using the integral distance
performs the best with 19% improvement. The three modified K-
means algorithms (method 3-5) out-perform the bottom-up meth-
ods probably because all the segments were used in the initial-
ization step. Meanwhile, the cheaper diagonal covariance method
(method 2) in bottom-up clustering out-performs the full covari-
ance (method 1). One possible reason is that our final models use
diagonal covariances.

The PSM model is further increased to 8 mixture and a 50-
Best List generated from 8mix HMM is used. With the use of
endpointing in training and gamma duration model, we achieve a
7.15% WER which is 8.5% better than our best HMM performance
with 16 mixture with 7.81% WER.

In terms of computation, the processing time required for clus-
tering the two mixture model is shown in the 4-th column of Table
2. The processing time were the elapsed time computed using a P-
4 2.4GHz machine. This processing time does not include the time
to generate sufficient statistics for each segment which can take
several minutes to hours depending on whether covariance is used.
For method 1 and 2, only a maximum of 500 instances triphones
were used in clustering while for the K-means methods (method 3-
5), all data were used in clustering. It is clear that the proposed K-
Mean algorithms required much less computation compared with
the likelihood ratio distance with bottom-up clustering. For Algo-
rithm 3, the processing time is directly proportional to the number
of random initial points.

6. SUMMARY

In this paper, we report our experience using PSM for LVCSR
tasks. Significantly improvement is achieved. Our best PSM LVCSR
model achieved a WER of 7.15% compared to 7.8% when using
HMM with similar complexity.

To perform recognition in LVCSR, we first proposed the use
of sub-phonetic segments. This allows us to use well established
model tying approach commonly used in HMM. We also explored
several modified K-means algorithms for mixture initialization.
These algorithms are compared with the bottom-up agglomerative
clustering used in our previous work. We have showed from our
experiments that the proposed algorithms out-perform the tradi-
tional clustering techniques both in terms of recognition accuracy
and processing speed. For the two-mixture model, PSM with the
integral distance K-means clustering achieved 19% relative im-
provement over HMM. For the 4-mixture case, the relative im-
provement is 8%. The processing time of the proposed algorithms
are simply 1/100 of the agglomerative clustering.

Comparing the vectorized distance with the integral distance,
it should be noted that they will be the same if the orthogonal poly-

nomial basis is used [13] because then, the integral of the polyno-
mial square error function will be reduced to the sum of squares of
differences in coefficients.

Currently, we are implementing the orthogonal transformation
based clustering. We also plan to apply EM training instead of
Viterbi training.
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