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ABSTRACT

Recent work has proposed the use of a discrete 

representation of the dynamics of the fundamental 

frequency and short-term energy temporal trajectories to 

characterize speaker and/or language information. Since 

the short-term energy trajectory is affected by several 

factors, like speaker, phone, and channel information, we 

propose the use of the temporal trajectories from frequency 

bands instead of the short-term energy in the speaker 

modeling. This approach allows us to use only the relevant 

information (i.e., speaker and phone) and discard the 

irrelevant information (i.e., channel). The proposed 

approach is evaluated on the 2001 and 2003 NIST 

Extended-data speaker detection tasks. We show that the 

proposed approach can achieve 12% relative improvement 

in performance over the approach using the short-term 

energy trajectory. 

1. INTRODUCTION

In previous work [1-3], we characterized speaker/language 

information by modeling the dynamics of temporal 

trajectories of fundamental frequency (F0) and short-term 

energy. The idea of this approach is to capture 

intonation/rhythm patterns produced by a given speaker or 

language. However, the short-term energy temporal 

trajectory can be affected by several factors (e.g., 

environmental and channel) that do not contribute to the 

speaker characterization. In fact, several authors [4, 5] 

have shown that different frequency bands are affected by 

variations due to phoneme, environment, and channel 

information. For example, the region around 5-6 barks 

(approximately 500-600 Hz) contains the highest phone 

variability (voiced phones have high energy in this region 

and the unvoiced phones have low energy [6]), which is 

useful for speaker recognition [7]. Besacier et al. [5] show 

that the low-frequency bands (less than 600 Hz) and the 

high-frequency bands (more than 3000 Hz) contain more 

speaker-specific information than the remained bands. 

Therefore, we investigate the use of temporal trajectories 

from frequency bands with the F0 trajectory to 

characterize speaker information. The use of frequency 

bands for speaker modeling allow us: 1) to use only the 

bands that carry most of the relevant information (phone 

and speaker) and discard the irrelevant information 

(channel), and 2) to deal with noise conditions 

(environment and channel) that affect only part of the 

speech spectrum [8]. We describe a system that models the 

dynamics of the F0 and each frequency band temporal 

trajectories to characterize speaker information. The 

proposed approach is evaluated on the 2001 and 2003 

NIST Speaker Recognition Evaluation – extended-data 

one-speaker detection. 

This paper is organized as follows: Section 2 

describes the 2001 and 2003 NIST Extended-data speaker 

detection task. In Section 3, we present the baseline 

system. In Section 4, we describe the proposed method and 

demonstrate its performance. 

2. THE NIST EXTENDED-DATA SPEAKER 

DETECTION TASK 

In 2001, NIST introduced a new speaker detection task 

that provides large amounts of training data: extended-data 

one-speaker detection task [9]. The purpose of this task is 

to support the exploration and development of higher-level 

and more complex characteristics for speaker recognition. 

The goal of one-speaker detection task is to determine 

whether a specified speaker is speaking during a speech 

segment. It is assumed that the speech segment has only 

speech from one speaker. The decision must be made 

based upon a test segment and a target-speaker model. In 

this task, the target speaker models were trained using 1, 2, 

4, 8, or 16 conversation sides (approximately 2.5 minutes 

of speech per side). A complete conversation side was 

used for testing.

The data for this task comprises of conversational, 

telephone speech from LDC’s Switchboard corpora in a 

cross-validation procedure to obtain a large number of 

trials. The extended-data one-speaker detection task in the 

2001 NIST SRE [9] uses data from the Switchboard I 

corpus, and the 2003 NIST SRE [10] uses data from the 

Switchboard II corpus (phases 2 and 3). The task in the 

2001 NIST SRE consists of 483 speakers with 4,105 

target-speaker models and 57,470 trials for the testing 
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phase. In the 2003 NIST SRE, the task consists of 10,932

target-speaker models and 156,184 trials for the testing 

phase.

The performance measure used to evaluate the

described systems is the equal error rate (EER). It

represents the system performance when the false

acceptance rate (accepting an impostor) is equal to the

missed detection rate (rejecting a true speaker). In this

work we report only the results for 8-conversation training

condition. The binomial test for differences in proportion

is used to check whether the difference between the EER

of the systems is statistically significant [11]. Unless

specified, the level of significance is set to  = 0.05.

3. F0 AND SHORT-TERM ENERGY BASELINE

The baseline system [2] characterizes speaker information

by modeling a sequence of discrete symbols that describe

the signal in terms of the dynamics (rate of change) of the

F0 and short-term energy temporal trajectories. The

sequence of discrete units are estimated from the speech

signal as follows: 1) compute the F0 and energy temporal

trajectories, 2) compute the rate of change (time

derivative) for each trajectory, 3) detect the inflection 

points (points at the zero-crossings of the rate of change)

for each trajectory, 4) segment the speech signal at the

detected inflection points and at the voicing boundaries,

and 5) convert the segments into a sequence of symbols by

using the rate of change of both trajectories within each 

segment. Since there are no F0 values on unvoiced

segments, such segments constitute one class. Table 1 lists 

the 5 possible classes used to describe the speech

segments.

The duration information is also integrated in each 

segment class by adding an extra label representing the

duration of the segment. Since the speech representation

uses discrete symbols, the segment duration is quantized

into “Short” and “Long”. For voiced segments (classes

from 1 to 4), “Short” is assigned to segments shorter than

80 ms. For unvoiced segments (class 5), “Short” is 

assigned to segments with duration less than 140 ms. Thus,

the number of segment classes is increased to 10.

Table 1: Temporal trajectory segment classes

Class Dynamics description

1 rising F0 and rising energy

2 rising F0 and falling energy

3 falling F0 and rising energy

4 falling F0 and falling energy

5 unvoiced segment

We use n-grams to build target-speaker and speaker-

independent models. The speaker detection score is

computed using a conventional log-likelihood ratio test 

[12, 13] between the target-speaker model and the speaker-

independent model averaged over all n-gram tokens [14].

In all experiments, we used a bigram model for estimating

the scores. The EER for the bigram modeling for 8-

conversation training is 11.4% on the 2001 NIST SRE and 

14.2% on the on the 2003 NIST SRE.

4. SUB-BAND ENERGY MODELING

The sub-band modeling uses the frequency-band energy

trajectories instead of the full-band energy (i.e., short-term

speech energy). The diagram of the frequency-band based

speaker detection system is depicted in Figure 1. We

assume that the frequency bands are independent, so that it

allows us to score and combine different frequency bands.

First, the frequency-localized temporal trajectories are

estimated from the speech signal. The temporal trajectories

are estimated from non-uniform frequency bands mapped

from the speech spectrum to the 15 Bark-scale critical

bands (1-Bark spacing between filters). Second, for each 

band, the sequence of joint-state classes is estimated from

the F0 and frequency-band energy temporal trajectories, as 

described in Section 3. Third, the log-likelihood ratio 

between the target-speaker model and the speaker

independent model is estimated for each frequency-band.

Then, the fusion module selects and fuses the likelihood

scores from the frequency bands. The likelihood score for

Figure 1: Frequency-band based speaker detection system.
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each trial is estimated by averaging the likelihood scores

from the selected frequency bands.

Figure 2: Performance for each bark-scale critical-band on

the 2001 and 2003 NIST SREs when used to estimate the 

joint-state classes plus duration. The lower and upper cut-off

frequencies are shown for each critical-band.

Figure 2 shows the performance for each frequency

band (and their respective lower- and upper-cut-off

frequencies) on the 2001 and 2003 NIST SREs. The

performance of the first critical-band (12.6% on 2001

NIST SRE and 17.4% on 2003 NIST SRE) is significantly

worse than the respective baseline for both tasks. The

reduced performance of the first two critical-band

performance is expected because we are dealing with

narrow-band telephone speech (300-3400 Hz) [5], and 

because channel variability is higher in lower bands

whereas the speaker variability is higher in higher bands

[4]. The performance of the second critical-band on the

2003 NIST SRE (15.5% on 2003 NIST SRE) is also worse

than the baseline. One reason is that the evaluation data of

the 2003 NIST SRE has 50% of the target trials (the

hypothesized and target speakers are the same) with 

matched handset (i.e., target trial has the phone number of 

the test conversation occurring at least once in the speaker

model training data). The evaluation data of the 2001 

NIST SRE has about 91% of the target trials with matched

handset.

Even though most of the energy concentrates around

the low-frequency bands, the performance for high-

frequency bands is very similar to the low frequency

bands. This result follows the findings that high frequency

bands play an important role in speaker recognition [15-

18]. Lavner et al. [19] show that the shifting F3 and F4

formant frequencies of vowels affect more the

identification rate than shifting F1 and F2 formant

frequencies. Lavner’s result allows us to speculate that our 

modeling of the high frequency bands might be capturing

some relationship between pitch and the phone formant

frequencies.

4.1. Frequency-band Fusion

Since the performances of the individual frequency bands

are similar to the performance obtained from the full-band

energy, we run several experiments that fuse different

combinations of frequency bands. Figure 3 shows the

performances of some frequency-band fusions on both

NIST SREs.

The first fusion experiment combines the detection 

scores from all 15 frequency bands. The EER of this

fusion is 10.5% on the 2001 NIST SRE and 12.5% on the

2003 NIST SRE. This fusion achieves a significant better

performance than the system based on short-term energy.

Even though the number of parameters in the fusion

system is higher (i.e., number of bands times 10 classes)

than the approach that uses the short-term energy contour,

the fusion of the frequency-band scores allows the bands

that carry more speaker-dependent information to provide

sufficient reliable information to the decision process.

The fusion of the upper-half of bark-scale bands (from

8th to 15th bands) performs significantly worse than the

lower-half fusion. The main reason is that most of the

energy of voiced phones concentrates in the region around 

500-600 Hz [6]. Such region has shown to be important for

Figure 3: Performance of the frequency-band trajectories fusion on the 2001 and 2003 NIST SREs. 
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speaker recognition [4]. 

The best performance is achieved by the fusion of the 

2nd, 3rd, 5th, 6th, 14th, and 15th critical-bands. The 

performance for both databases yields a 12% relative 

improvement over the full-band energy based modeling 

(EER=10% for the 2001 NIST SRE and EER=12.4% for 

the 2003 NIST SRE). Even though there is no significant 

improvement over the fusion of all 15 bands, this fusion 

uses only 6 frequency bands. This result is very similar to 

the findings in a speaker identification experiment on 

TIMIT database (clean, telephone speech) done by 

Besacier et al. [5].  

5. CONCLUSIONS 

We presented a new multi-band based approach to 

characterize speaker information. This approach extends 

the concept of modeling the dynamics of two different 

streams by replacing the short-term energy by frequency-

band energy temporal trajectories. The motivation of this 

approach is that different frequency bands are affected 

differently by phone, speaker, and channel information. 

Besides, the independence between frequency bands 

provides a more robust approach to channel effects.  

The modeling of the dynamics of the temporal 

trajectories of F0 and a set of some frequency bands 

provides a 12% relative improvement over the full-band 

energy based modeling. This result shows that the 

dynamics of some frequency bands and F0 can 

characterize speaker information. Note that the best 

performance is achieved by using only 6 frequency bands 

(i.e., 4 bands below 600 Hz and 2 bands above 2500 Hz), 

which have been long acknowledged to carry more 

speaker-specific information than the remainder 

frequencies. 

As future work, we plan to investigate the 

relationship between the dynamics of the frequency-band 

energy and F0 temporal trajectories and prosodic 

phenomena (e.g., stress and intonation). We also plan to 

develop a new duration quantization process that is tuned 

according to the frequency band being modeled.  
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