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ABSTRACT 

Unseen handset mismatch and limited training/test data 

are the major source of performance degradation for speaker 

identification in telecommunication environment. In this paper, 

a vector quantization (VQ)-based prosody modeling and an 

eigen-prosody analysis (EPA) is integrated to transform the 

close-set speaker identification problem into a full text 

document retrieval-similar task. The prosody modeling labels 

the prosodic feature contours of a speaker’s speech into 

sequences of prosody states. EPA then constructs a compact 

eigen-prosody space to represent the constellation of speakers. 

Furthermore, EPA is fused with a lower-level a priori

knowledge interpolation (AKI) handset distortion compensator 

to complement each other. Experimental results on the HTIMIT 

database had shown that about 41.0% and 32.8% relative error 

rate reduction for seen and unseen handsets, respectively, was 

achieved comparing with the maximum a priori-adapted

Gaussian mixture model/cepstral mean subtraction (MAP-

GMM/CMS) baseline. 

1. INTRODUCTION 

A speaker identification system in telecommunication network 

environment needs to be robust against distortion of mismatch 

handsets. However, some mismatch handsets may not be seen 

in advance, i.e., unseen handsets, and will cause significant 

performance degradation. To address this problem, prosodic 

features, which are known to be less sensitive to handset 

mismatch, are attractive recently. Several successful techniques 

have been proposed including the distribution [1], the N-gram 

[2] and the discrete hidden Markov model (DHMM) [2] 

approaches.

In the distribution approach, the per-frame pitch and 

energy values are extracted and modeled using traditional 

distribution models, such as the conventional Gaussian mixture 

models (GMMs). In the N-gram approach, the dynamics of the 

pitch and energy trajectories are described by sequences of 

symbols and modeled by the n-gram statistics. In the DHMM 

method, the sequences of prosody symbols are further modeled 

by the state observation and transition probabilities. However, 

the distribution approach may not adequately capture the 

temporal dynamic information of the prosodic feature contours 

and the N-gram and DHMM methods usually require large 

amount of training/test data to reach a reasonable performance. 

In this paper, a VQ-based prosody modeling and an eigen-

prosody analysis approach are integrated together to add 

robustness to conventional cepstral features-based GMMs 

close-set speaker identification system under the situation of 

mismatch unseen handsets and limited training/test data. 

The idea of EPA previously proposed in [3] is modified to 

first build a VQ-based prosodic modeling to label the prosodic 

feature contours of a speaker’s enrollment speech into 

sequences of prosody states. EPA then treats the sequences of 

prosody states as a text document which records the detail 

prosody/speaking style of the specific speaker. The speaker’s 

evaluation speech is also labeled and uses as the query 

keywords to recall the most related prosody document 

(speaker). By this way, the speaker identification problem is 

transformed into a full-text document retrieval-similar task and 

the latent semantic analysis (LSA) [4] is applied to build an 

eigen-prosody space to represent the constellation of speakers. 

Furthermore, since EPA utilizes prosody-level information, 

it could be further fused with acoustic-level information to 

complement each other. In this paper, the a priori knowledge 

interpolation (AKI) [5] approach is chosen. It utilizes the 

maximum likelihood linear regression (MLLR) to compensate 

handset mismatch and is capable to deal with unseen handsets. 

This paper is organized as follows. Section 2 describes the 

VQ-based prosody modeling. Section 3 briefly reviews the AKI 

approach which uses the MLLR model transformation. Section 

4 describes the EPA and given some analysis examples. Section 

5 reports the experimental results evaluated on the well-known 

HTIMIT database [6]. Some conclusions are given in the last 

section. 

2. VQ-BASED PROSODIC MODELING 

2.1. Prosodic modeling 

In this study, syllables are chosen as the basic processing units. 

Five types of prosodic features are chosen including the slope 

of pitch contour and lengthening factor of a vowel segment, 

average log-energy difference and value of pitch jump between 

two vowels and pause duration between two syllables. 

Moreover, the prosody features are normalized according to 

underline vowel class to remove any non-prosodic effects. 

To build the prosodic model, the prosodic features are 

vector quantized into M codewords using the expectation-

maximum (EM) algorithm. For example, in a preliminary 

experiment, an 8-codeword prosodic modeling was build from 

the enrollment speech of the HTIMIT database (described in 

detail in Section 5.1), the centroid of each codeword is shown 

in Table 1. 

After some statistics and cross-examining between the 

codewords, the distribution of the transition matrix (Table 2) 
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and the occurrence positions of codewords in utterances, the 

meaning of the codewords (called states from now on) could be 

identified. For example, state 6 is the phrase-start; state 3 and 4 

are the major-breaks. This model could then be used to label 

the prosodic status of an input utterance. 

Table 1: The centroids of the 8-state prosodic model trained 

from the enrollment speech of HTIMIT database. 
Feature/State 1 2 3 4 5 6 7 8 

Pitch slop -0.1 0.7 -0.1 -0.2 0.1 0.3 -0.2 -2.5

Energy diff. -0.4 -0.5 -0.8 -1.9 -0.1 0.2 1.3 0.1

Pitch jump -0.2 -0.2 1.3 1.4 -0.1 -0.9 0.3 -0.6

Lengthening 0.3 -0.5 0.3 1.4 0.1 -0.1 0.1 0.1

Pause 0.4 -0.5 0.5 2.6 0.2 -0.3 0.3 0.1

Table 2: The state transition matrix of the 8-state prosodic 

model trained from the enrollment speech of HTIMIT database. 
 1 2 3 4 5 6 7 8 

1 3424 1256 854 429 1059 2783 919 304

2 1304 599 255 209 451 1282 344 192

3 347 122 77 55 109 405 109 43

4 20 18 5 3 18 50 10 3

5 1074 510 237 167 348 894 286 91

6 3218 1544 621 364 1005 2804 891 351

7 882 392 255 102 330 829 416 162

8 331 180 100 63 95 349 129 98

2.2. Prosodic labeling 

By feeding the prosodic feature contours of a speaker’s 

utterance into the prosodic model, an utterance could be labeled 

as sequences of prosody state indices. A typical example of the 

prosody state labeling of an HTIMIT utterance using the 8-state 

prosodic modeling are shown in Figure 1. 

By this way, the prosodic phenomenon of each vowel 

segment is mapped into a meaningful prosodic state and the 

sequences of prosodic state indices could be treated as a 

prosody text document to book the prosodic behavior of the 

speaker.

Figure 1: A typical prosodic state labeling of an input utterance 

using the 8-state prosodic modeling trained from the enrollment 

speech of HTIMIT database (bottom panel: pitch contour). 

3. AKI UNSEEN HANDSET ESTIMATION 

The concept of AKI is to first collect a set of characteristics of 

seen handset as the a priori knowledge to construct a space of 

handsets. During evaluation, the characteristic of a test handset 

is estimated and compensated by interpolating the set of the a

priori knowledge. AKI could be applied in both feature and 

model spaces. In this paper, model-space AKI using the MLLR 

model transformation is chosen to compensate the handset 

mismatch. 

The estimate of the characteristic ĥ  of a test handset is 

defined in Equation 1. 

1

ˆ
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n

h h    (1) 

where { ( , , ), 1 ~ }n n n nH h A b T n N  is the set of a

priori knowledge, i.e., the tied MLLR mean and variance 

transformation matrices, collected from N seen handsets, and 

n  are the interpolation weights controlled by handset 

posteriori probabilities [5]. Beside, the MLLR model 

transformation is defined as: 
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Where u  and u  are the original and adapted mixture mean 

vectors, respectively,  is the adapted variance and C  is the 

inverse function of Choleski factor of the original variance 

matrix
1

.

4. EIGEN-PROSODY ANALYSIS 

The procedures of the EPA (see Fig.2) includes: (1) VQ-based 

prosodic modeling and labeling to convert the prosodic feature 

contours of a speaker into sequences of prosody states, (2) 

segmenting the sequences to extract important prosody 

keywords, (3) calculating the occurrences statistics of these 

prosody keywords for each speaker to form a prosody 

keyword-speaker occurrence matrix, (4) applying the singular 

values decomposition (SVD) technique to decompose the 

prosody keyword-speaker occurrence matrix to build an eigen-

prosody space to represent the constellation of speakers, and (5) 

measuring the speaker distance using the cosine of the angle 

between two speaker vectors in the eigen-prosody space. The 

procedures (see Figure.2) are briefly described in the following 

subsections. 

Figure 2: The proposed scheme of the eigen-prosody analysis 

for robust close-set speaker identification: (a) construction of 

the prosody keyword-speaker occurrence matrix and (b) 

eigen-prosody space analysis using SVD. 
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4.1. Prosody keyword extraction 

After the prosodic state labeling, the prosody text documents of 

all speakers are searched to find important prosody keywords in 

order to establish a prosody keywords dictionary. Essentially, 

the compilation of the dictionary can be treated as an unknown-

word extraction problem and an N-gram approach for finding 

high frequency collocations is adopted. 

First, all possible combinations of the prosody words, 

including single words and word pairs (uni-gram and bi-gram), 

are listed and their frequency statistics are computed. After 

calculating the histogram of all prosody words, frequency 

thresholds are set to leave only high frequency ones.  

4.2. Prosody keyword-speaker occurrence matrix statistics 

The prosody text document of each speaker is then parsed using 

the generated prosody keywords dictionary by simply giving 

higher priority to longer words. The occurrence counts of 

keywords of a speaker are booked in a prosody keyword list 

vector to represent the long-term prosodic behaviors of the 

specific speaker. Therefore, the prosody keyword-speaker 

occurrence matrix A  is made up of the collection of all 

speaker prosody keyword lists vectors. Moreover, to emphasize 

the uncommon keywords and to deemphasize the very common 

ones, the inverse document frequency (IDF) [4] weighting 

method is applied. 

4.3. Eigen-prosody analysis 

In order to reduce the dimension of the prosody space, the 

sparse prosody keyword-speaker occurrence matrix A  is 

further analyzed using SVD to find a compact eigen-prosody 

space. Specifically, given an m  by n  ( m n ) matrix A  of 

rank R , A  is decomposed and further approximated using 

only the largest K  singular values as: 
T

K K KA U V     (3) 

where
K

A ,
K

U ,
K

V , and 
K

 matrices are the rank reduced 

matrices of the respective matrices. 

A typical example of the eigen-prosody space by the 

analysis of the senh enrollment set is shown in Figure 3. By this 

way, EPA is capable to give a compact eigen-prosody space to 

model the long-term prosodic behaviors of the speakers. 

4.4. Score measurement 

The problem of the speaker identification is now formulated as 

a pseudo-document testing as in the LSA approach. The test 

utterances of a test speaker are first labeled and parsed to form 

the pseudo query document 
Q

y , and then transformed into the 

query vector 
Q

v  in the eigen-prosody speaker space by 

1T

Q Q K Kv y U   (4) 

The distance between the test speaker and the i -th 

registered speaker is defined as the cosine of the angle between 

the query vector 
Q

v and the i -th speaker vector 
,K i

v
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Figure 3: A typical distribution of the prosody keywords and 

speakers castellation on the two dimensional eigne-prosody 

space using the 8-state prosodic modeling trained from the 

enrollment speech of HTIMIT database. 

5. SPEAKER IDENTIFICATION EXPERIMENTS 

5.1. HTIMIT database and experiment conditions 

To evaluate the effectiveness of the proposed EPA approach, 

the well-known HTIMIT database [6], which was recorded for 

studying the handset mismatch problem, was chosen. There 

were in total 384 speakers, each gave ten utterances using a 

Sennheizer head-mounted microphone (called senh). The set of 

384*10 utterances was then playback and recorded through nine 

other different handsets include four carbon button (called cb1, 

cb2, cb3 and cb4), four electret (called el1, el2, el3 and el4) 

handsets, and one portable cordless phone (called pt1). 

However, in this paper, all experiments were performed on 

302 speakers including 151 females and 151 males which have 

all the ten utterances. For training the speaker models, the first 

seven utterances of each speaker from the senh handset were 

used as the enrollment speech. The other ten three-utterance 

sessions of each speaker from ten handsets were used as the 

evaluation data, respectively. 

To construct the speaker models, a 256-mixture universal 

background model (UBM) was first built from the enrollment 

speech of all 302 speakers. Then, for each speaker, a MAP-

adapted GMM (MAP-GMM) [7] adapted from the UBM using 

his own enrollment speech was built. 38 mel-frequency cepstral 

coefficiences (MFCCs) including 12 MFCCs, 12 -MFCCs, 12 
2-MFCCs, -log-energy and 2- log-energy were computed 

with window size of 30 ms and frame shift of 10ms. The pitch 

contours of all utterances were extracted using the popular 

Wavesurfer/Snack sound toolkit. Moreover, phone-level 

segmentations from TIMIT corpus were used to extract THE 

five prosodic features. 

5.2. Cross-validation experiments 

First, the MAP-GMM speaker identification using the CMS 

method to remove the handset bias was evaluated as the 

baseline (called MAP-GMM/CMS). The average identification 

rate of 60.5% (shown in Table 3) was achieved. Compared with 

the one reported in [6], the results was promising. 

Secondly, the leave-one-out cross-validation strategy is 

used to evaluate three fusion approaches including AKI+, EPA+ 
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and EPA+AKI+MAP-GMM/CMS under the unseen handset 

mismatch situation. In brief, one of the nine handsets (cb1~4, 

el1~4 and pt1) was chosen in turn as the unseen handset and 

removed from the set of the a priori knowledge. The remaining 

nine handsets (including senh) were used as the seen handsets. 

Therefore, there were in total 9 cross-validation identification 

turns, 90 experiments. 

The proposed AKI+MAP-GMM/CMS fusion system was 

tested. The speech was divided into three classes (speech or 

consonant, vowel and silence). For each class, a MLLR mixture 

mean offset and transformation matrix and a variance scaling 

factor were measured for each handset. The average speaker 

identification rate was rising to 72.2% (see Table 3). 

The proposed EPA+MAP-GMM/CMS fusion approach 

was also evaluated. From the senh subset, a 32-state prosodic 

modeling was trained and 367 prosody keywords were 

extracted to form a sparse 367*302 dimensional matrix A .

While using three dimensional eigen-prosody space, 

identification rate of 70.5% was achieved. These two results 

indicate that the both EPA and AKI approaches are promising 

approaches for robust speaker identification under the 

mismatch unseen handset condition. 

Finally, EPA, AKI and MAP-GMM/CMS approaches 

were all fused together to form a EPA+AKI+MAP-GMM/CMS 

system. From Table 3, identification rate of 76.7% was 

achieved. This indicates that the EPA, AKI and MAP-

GMM/CMS methods are complement to each other. 

Moreover, the average speaker identification rate of the 

unseen handsets in the nine cross-validation tests were separated 

and shown in Table 4. It showed that the AKI+, EPA+ and 

EPA+AKI+MAP-GMM/CMS methods could improve the 

performance from 58.9% (MAP-GMM/CMS) to 68.2%, 70.5% 

and 72.4%, respectively. Therefore, the results in Table 3 and 4 

showed that the proposed fusion system could efficiently 

compensate the mismatch for both seen and unseen handsets. 

Table 3: The average close-set speaker identification rates (%) 

of the nine cross-validation evaluations on the HTIMIT 

database achieved by the MAP-GMM/CMS, AKI+, EPA+ and 

EPA+AKI+MAP-GMM/CMS approaches, respectively. 

 Average 

MAP-GMM/CMS 60.5 

  +AKI 72.2 

  +EPA 70.5 

  +EPA +AKI 76.7

6. CONCLUSIONS 

This paper presents an EPA+AKI+MAP-GMM/CMS fusion 

approach. It integrates together a prosody-level EPA, an 

acoustic-level AKI and a MAP-GMM/CMS baseline for robust 

close-set speaker identification on the situation of unseen 

mismatch handset and limited available data. 

Unlike conventional fusion approaches, which usually 

require a lot of speech data to build a reasonable prosodic 

modeling and may have difficulty to deal with unseen handsets, 

the proposed method requires only few training/test utterances 

(in this case, seven/three utterances) and could alleviate the 

distortion of unseen mismatch handsets. Experimental results 

on the HTIMIT database have shown that, a remarkable 

improvement, about 41.0% and 32.8% relative error rate 

reduction for seen and unseen handsets, respectively, 

comparing with the conventional MAP-GMM/CMS baseline, 

could be achieved. It is therefore a promising method for robust 

speaker identification under mismatch environment and limited 

available data. 
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