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ABSTRACT

The MIT Lincoln Laboratory submission for the 2004 NIST 

Speaker Recognition Evaluation (SRE) was built upon seven

core systems using speaker information from short-term 

acoustics, pitch and duration prosodic behavior, and phoneme 

and word usage. These different levels of information were 

modeled and classified using Gaussian Mixture Models, Support 

Vector Machines and N-gram language models and were 

combined using a single layer percepton fuser. The 2004 SRE 

used a new multi-lingual, multi-channel speech corpus that

provided a challenging speaker detection task for the above 

systems. In this paper we describe the core systems used and

provide an overview of their performance on the 2004 SRE

detection tasks. 

1. INTRODUCTION

Over the last several years, there has been continued interest in 

exploiting new levels of speaker information for improved 

speaker verification performance [1]. For the 2004 NIST speaker

recognition evaluation (SRE), MIT Lincoln Laboratory

continued efforts in this area with a submission built upon seven 

core systems using speaker information from short-term 

acoustics, pitch and duration prosodic behavior, and phoneme 

and word usage. These different levels of information were 

modeled and classified using Gaussian Mixture Models, Support 

Vector Machines and N-gram language models and were 

combined using a single layer percepton fuser. The 2004 SRE 

used a new multi-lingual, multi-channel speech corpus that

provided a challenging speaker detection task for the above 

systems. In this paper we describe the core systems used and

provide an overview of their performance on the 2004 SRE

detection tasks. 

2. 2004 NIST SPEAKER RECOGNITION 

EVALUATION

In an ongoing effort to support research and development in text-

independent speaker recognition technologies, NIST has been 

conducting annual speaker recognition evaluations [2] The aim

of these evaluations is to provide common framework (data, 

rules and scoring) to allow focused technology development and 

meaningful comparison of techniques and approaches. New for 

this year, a large suite of train/test conditions was provided and

data from the bilingual cross-channel MIXER corpus was used. 

As in past years, the core task for SRE04 was speaker detection: 

Given a model speaker, determine if that speaker is speaking in a

given test segment. Performance is evaluated using Detection 

Error Trade-Off (DET) curves and the Decision Cost Function

(DCF). There were 7 training conditions and 4 testing conditions 

for a total of 28 possible conditions. The train/test conditions

covered varying amounts of data (10sec to 16 conversation sides)

and contamination by other speakers (summed conversation 

sides). Additionally, there was an adaptation mode to the above 

tasks. A complete description of the SRE04 tasks and rules can 

be found at http://www.nist.gov/speech/tests/spk/2004/.

The data used in SRE04 was derived from the new MIXER 

corpus which was designed to support large multi-sessions

training and to include cross-channel recordings and bi-lingual 

speakers [3]. A total of 3637 conversations involving 310

speakers were used, with bilingual speakers of Arabic, Mandarin, 

Russian, and Spanish with English. No development data from

MIXER (or the related FISHER corpus) was provided. The 

MITLL system used development data from the aggregations of 

the Switchboard II phases 1-5 corpora.

3. CORE DETECTION SYSTEMS 

3.1 Spectral Based 

For the 2004 system we used two spectral based verification 

systems: a Gaussian Mixture Model-Universal Background

Model (GMM-UBM) system and a Support Vector Machine

(SVM) system.

3.1.1 GMM-UBM

The basic system used is a likelihood ratio detector with target 

and alternative probability distributions modeled by Gaussian 

mixture models (GMMs). A Universal background model GMM

is used as the alternative hypothesis model and target models are 

derived using Bayesian adaptation [4]. The techniques of feature 

mapping [5], Tnorm [6] and a new form of Adapted Tnorm 

(ATnorm) were applied [7].

A 19-dimensional mel-cepstral vector is extracted from the 

speech signal every 10ms using a 20ms window. Bandlimitng is 

performed by only retaining the filterbank outputs from the 

frequency range 300Hz-3138Hz. Cepstral vectors are processed 

with RASTA filtering to mitigate linear channel bias effects. 

Delta cepstral are then computed over a +-2 frame span and 

appended to the cepstra vector producing a 38 dimensional

feature vector. The feature vector stream is then processed

through an adaptive, energy-based speech detector to discard 

low-energy vectors. The silence removed features are processed

with feature mapping and, finally, normalized by removing the

global mean and dividing by the standard deviation.. 
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The background model used for all targets is a gender-

independent 2048 mixture trained using data from Switchboard 

II-phase1, Switchboard II-phase4 (cell), and the OGI National 

Cellular Database. 

Target models are derived by Bayesian adaptation (a.k.a. MAP 

estimation) of the UBM parameters using the designated training

data. Based on observed better performance, only the mean 

vectors are adapted. The amount of adaptation of each mixture

mean is data dependent with a relevance factor of 16 used. 

3.1.2 SVM

The Spectral SVM system uses a novel sequence kernel

described in [8], that compares entire utterances using a 

generalized linear discriminant. For SRE04 the same front-end 

processing used for the GMM-UBM system was used for the

SVM system.

The SVM used a Generalized Linear Discriminant Sequence

kernel (GLDS) [8] with an expansion into feature space using a 

monomial basis. All monomials up to degree 3 were used, 

resulting in a feature space expansion of dimension 9139. We

used a diagonal approximation to the kernel inner product

matrix.

A "background" for the SVM consisted of a set of speakers taken 

from a database not used in the train/test set. Speakers from

Switchboard II phases 1-5 were used as the background. 

SVM training was performed as a two-class problem where all of

the speakers in the background had SVM target -1 and the

current speaker under training had SVM target +1. For each 

conversation in the background and for the current speaker under

training, an average feature expansion was created. SVM training 

was then performed using the GLDS kernel implemented using 

SVMTorchi.

For each test utterance the standard front end was used. An 

average feature expansion was then calculated. Scores for each

speaker were an inner product between the speaker model and 

the average expansion.

3.2 Prosodic Based 

A distribution based pitch/energy classifier and a pitch/energy

sequence modeling system comprised the prosodic components 

used in the 2004 system.

3.2.1 Pitch and Energy GMM 

The aim of this system is to capture the characteristics of the F0

and short-term energy features distribution. This system is based 

on a likelihood ratio detector that uses adapted GMMs for 

estimating the likelihoods. 

The log F0 and log energy features are estimated every 10 ms

from the speech signal using the RAPT - Robust Algorithm for

Pitch Tracking proposed by Talkin [9]. Delta features, estimated 

over a 50ms window, are then appended. Only the feature

vectors extracted for voiced speech regions are used in training

and testing.. In addition, a speech activity detector is employed

to discard feature vectors extracted from silence and noisy

i http://www.idiap.ch 

regions. Care is taken to handle feature extraction at

discontinuities.

The UBM is a 512-component Gaussian Mixture Model trained

with speech from Switchboard II. During recognition the target

model scores are normalized using T-norm.

3.2.2 Slope and Duration n-gram

To capture prosodic differences in the realization of intonation, 

rhythm, and stress, we converted the F0 (acoustic correlate of 

pitch) and energy contours into a sequence of tokens reflecting 

the joint state of the contours (rising or falling) and then applied 

simple n-gram tools to model and classify distinctive token 

patterns from token sequences [10].

The joint-state classes estimation is divided into 5 steps: 1) 

compute  the f0 and energy temporal trajectories, 2) compute the

rate of change for each trajectory, 3) detect the inflection points

(points at the zero-crossings of the rate of change) for each 

trajectory, 4) segment the speech signal at the detected inflection 

points and at the voicing starts or ends, and 5) convert the

segments into a sequence of symbols by using the rate of change 

of both trajectory within each segment. We can also integrate the

duration information in each segment class by adding an extra 

label with the duration information. All segments smaller than 30 

ms are removed from the sequence of joint-state classes and we 

placed <bound> symbols around each utterance, defined as

speech segments separated by silent gaps greater than 0.5 

seconds.

The speaker detection score is computed using a conventional 

log-likelihood ratio test between the target-speaker model and

the UBM averaged over all n-gram types [11,12]. Then, the 

target model scores are normalized using T-norm. 

3.3 Phonetic Based 

Two systems which operated on the phone stream were applied: 

One was based on standard N-gram modeling/scoring and one 

based on a new SVM classifier using N-gram counts.

Gender-independent phone recognition is performed using HTK

3.1.1ii. Six phone recognizers (English, German, Hindi, Japanese, 

Mandarin, and Spanish) were trained on phonetically marked 

speech from the OGI Multilanguage corpus. Output token

streams from training and testing data were processed to produce

a sequence of token symbols, removing silence phones and 

inserting <end> <start> tokens at utterance boundaries defined as

silence gaps over a 0.5 sec duration. 

3.3.1 Phone N-grams

The phone N-gram system operates similar to the one described 

in [12]. For each speaker, a bi-gram model is estimated for each 

of the 6 phone recognizers. In addition a UBM for each phone

recognizer is trained using Switchboard II data. During testing 

likelihood ratio score between the target and UBM for each

phone stream is computed and a final fused score is produced as 

a linear combination of the 6 likelihood ratio scores.

ii http://htk.eng.cam.ac.uk/
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3.3.2 Phone SVM

The Phone SVM system uses a kernel for comparing

conversation sides based upon methods from information 

retrieval. Sequences of phones are converted to a vector of

probabilities of occurrences of terms and co-occurrences of terms

(bag of unigram and bag of bi-grams). A weighting based upon a 

linearization of likelihoods is then used to compare vectors for 

SVM training [13].

Probabilities of each phone and its joint probability with other

phones (unigram and bi-gram) in a given conversation were 

calculated with counts. These probabilities were then put in a

large (sparse) vector for training. The SVM used a kernel derived

from information retrieval methods and likelihood ratio scoring.

This amounted to scaling individual entries in the vector of 

probabilities with a term weighting of 1/sqrt(p(ti)), where p(ti)

was the probability of the term over all conversations in the 

“background.”

A “background” for the SVM consisted of a set of speakers taken 

from a database not used in the train/test set. Speakers from

Switchboard II phases 1-5 were used as the background. 

SVM training was performed as a two-class problem where all of

the speakers in the background had SVM target -1 and the

current speaker under training had SVM target +1. For each 

conversation in the background and for the current speaker under

training, a term-weighted vector of probabilities was created. 

SVM training was then performed using a linear kernel in 

SVMTorch. Different models of the same speaker were 

constructed for each of the different languages. 

For each utterance the standard front end was used in all 6 

languages. The scores for each of the 6 target speaker language 

models were then found using a SVM. The scores were then 

fused with equal weighting. 

3.4 Idiolectal Based 

This system used the Idiolect word n-gram approach proposed in

[11]. The idiolect system uses n-gram=2 (bigrams), discount=1 

(full discounting), and minimum n-gram count (c_min) of 9. This 

setting performed best on the development data, as compared

with discount=0, using trigrams, and using a higher minimum n-

gram count (200). We did not vary the probability-smoothing

factor of 0.001.

Word transcripts were derived from BBN Byblos 3.0 real-time 

recognition systemiii. All of Switchboard II was processed and 

used to derive a UBM. For the evaluation data, all English and 

non-English data was processed by the English Byblos system.

During testing the likelihood ratio score between the target and 

UBM is computed and Tnorm is applied. 

3.5 System Fusion 

The scores from the systems were fused with a perceptron 

classifier using LNKnetiv. The perceptron architecture chosen has

two input nodes, no hidden layers, and two output nodes. Input 

iii We would like to thank BBN for making this finely engineered

recognition system available. 
iv http://www.ll.mit.edu/IST/lnknet

values to the perceptron were normalized to zero mean and unit 

standard deviation using parameters derived from the training 

data. The perceptron weights were trained using the entire 

development data.  The classifier corresponding to the number of 

training conversations is then used to fuse scores from systems.

The fusion classifier is trained using minimum DCF criterion. 

Prior probability for the target class in training and testing was

set to 0.09 corresponding to the costs and priors

(C_miss*P_tgt/(Cmiss*P_tgt + C_fa*(1-P_tgt))). The hard

decision from the perceptron was used as the hard decision for

the submission. The score for the test file was set to (s_tgt + (1-

s_non))/2, where s_tgt and s_non are the perceptron scores for 

the target and nontarget classes, respectively.

4. RESULTS

Due to the limited space of this paper, we will limit our

examination of results to the 1 side train / 1 side test and 8 side 

train / 1 side test conditions In Figure 1 we show the DET curves

for the 7 core systems described above and the fusion system. As 

expected, the spectral based systems are providing the best

performance, with phone-SVM system the best non-spectral 

based system. Since many of the non-spectral systems require

more training data to learn speaker habits, it is not surprising that 

the fusion did not provide any improvement. We did, however, 

expect the fusion of the SVM and GMM systems to provide a 

boost in performance which we have seen on other data sets. 

Figure 1 1side train / 1side test all score pooling DET 

curves for 7 core systems and fusion. 

In Figure 2 we show the DET curves for the systems from the 8 

side train / 1 side test condition. Again we observe that the 

spectral based systems are performing the best. Contrary to

expectations, we found that fusion with higher-levels of 

information did not provide any gains. There are several possible

reasons for this. First, all development data was derived from

English data and so there may be a bias in the UBMs used in 

some systems, Second, the SRE04 data sets were designed to

have more channel mismatch than in previous years making the 
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task more difficult and potentially masking gains from the high-

level systems.

Figure 2 8 side train / 1side test all score pooling DET 

curves for 7 core systems and fusion. 

To examine the contribution of the systems further, we searched

for the best N-way system fusion for N=1-7 for two score

pooling conditions: All Pool, using all scores, and Common Pool,

where only scores from English train/test, handheld microphones 

and cell/landline are  used.. The minimum DCF values for these 

cases are shown in Figure 3.
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Figure 3 Minimum DCF values for best combinations of 

core systems from 8s/1s condition. Top plot is for All 

Pooling and bottom plot is for Common (English)

Pooling.

We see for the Common Pool case, that the word n-gram system

gives a decrease in error as has been seen in previous

evaluations. Since language was matched for the train, test, UBM 

and STT system, this result appears to support the potential 

cross-lingual degradations effects to high-level systems. It is 

worth noting that, using other examinations, we did not see 

cross-lingual degradation effects with the spectral based systems.

5. CONCLUSIONS

We have presented a brief overview of the continuing efforts at 

MIT Lincoln Laboratory to further exploit new levels of 

information to better characterize and recognize a speaker. We

described 7 core systems that used information from spectral, 

prosodic, phonetic and idiolectal sources, extracting different

types of features for use in generative, discriminative and 

discrete classifiers. We presented results on the new and 

challenging MIXER corpus used in SRE04, showing that some 

previously successfully fused system may need to be better

tailored to work in cross-lingual environments. 
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