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ABSTRACT

The current “state-of-the-art” in phonetic speaker recognition uses
relative frequencies of phone n-grams as features for training
speaker models and for scoring test-target pairs. Typically, these
relative frequencies are computed from a simple 1-best phone de-
coding of the input speech. In this paper, we present results on the
Switchboard-2 corpus, where we compare 1-best phone decodings
versus lattice phone decodings for the purposes of performing pho-
netic speaker recognition. The phone decodings are used to com-
pute relative frequencies of phone bigrams, which are then used
as inputs for two standard phonetic speaker recognition systems: a
system based on log-likelihood ratios (LLRs) [1, 2], and a system
based on support vector machines (SVMs) [3]. In each experi-
ment, the lattice phone decodings achieve relative reductions in
equal-error rate (EER) of between 31% and 66% below the EERs
of the 1-best phone decodings. Our best phonetic system achieves
an EER of 2.0% on 8-conversation training and 1.4% when com-
bined with a GMM-based system.

1. INTRODUCTION

Most conventional speaker recognition systems use Gaussian mix-
ture models (GMMs) to capture frame-level characteristics of a
person’s voice, where the speech frames are assumed to be inde-
pendent of one another. Because of this independence assumption,
GMMs often fail to capture certain types of speaker-specific in-
formation that evolve over time scales of more than 1 frame. For
example, since words usually span many frames, GMMs tend to
be poorly suited for modeling differences in word usage (idiolect)
between speakers. In [4], Doddington used word n-grams to model
speaker-specific patterns of word usage.

Another recent effort at moving beyond the standard GMM-
based paradigm is to explicitly model phone sequences used by
speakers. This line of research, which is generally referred to as
phonetic speaker recognition, was pioneered by Andrews et al.,
who used relative frequencies of phone n-grams to capture sequen-
tial patterns in an individual’s speech [1, 2]. This work was subse-
quently extended in various papers, such as the work of the “Su-
perSID” team at the JHU 2002 Summer Workshop [5, 6, 7]. In
2003, Campbell et al. used support vector machines (SVMs) to
train phonetic speaker models [3].

While these phonetic approaches have generally been quite ef-
fective, it is our opinion that the true potential of phonetic speaker
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recognition has yet to be realized—mainly because past systems
have used 1-best decodings instead of lattice decodings to estimate
relative frequencies of phone n-grams. In this paper, we com-
pare 1-best phone decodings vs. lattice phone decodings for the
purposes of performing phonetic speaker recognition. The phone
decodings are used to compute relative frequencies of phone bi-
grams, which are then used as inputs for two standard phonetic
speaker recognition systems: a conventional system based on log-
likelihood ratios (LLRs) [1, 2], and an SVM-based system similar
to that of Campbell et al. [3]. The results indicate that lattice de-
codings provide a much richer sampling of phonetic patterns than
1-best decodings. Note that a similar comparison between decod-
ing methods—with similar results—was recently reported within
the field of language recognition [8]. We were unaware of this
work until the time of its publication, shortly after the submission
of this paper.

The paper is organized as follows: Section 2 describes the task
and dataset. Section 3 describes our phone recognition system and
outlines a procedure for estimating relative frequencies of phone
bigrams. Section 4 describes the metrics that were used to train
speaker models and score test-target pairs. Section 5 describes the
experiments that we performed and discusses the results. Finally,
section 6 provides a summary of our findings.

2. TASK AND DATA

The experiments reported in this paper were performed on the
NIST 2003 Extended Data task, which uses phases II and III of
the Switchboard-2 corpus. The combination of phases II and III
amounts to a total of 14257 conversation sides with an average
length of approximately 2.5 minutes of speech. Under the Ex-
tended Data task, the conversation sides are divided into 10 splits.
There are no common speakers between any two splits. Thus,
when one split is selected for testing, the remaining 9 splits can
be used to train a background model.

The NIST Extended Data task comprises 5 different training
conditions: 1, 2, 4, 8, and 16-conversation training. In this pa-
per, we provide results for 1-conversation and 8-conversation train-
ing. These two training conditions provide a reasonably informa-
tive view of how speaker recognition accuracy is affected by the
amount of available training data.

3. PHONETIC PROCESSING

The following section describes the steps involved in computing
relative frequencies of phone bigrams from conversation sides.
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3.1. Speech/non-speech detection

For the experiments in this paper, we used a speech/non-speech
detector developed at SRI International [9] to remove non-speech
frames from the input audio. This step breaks the original conver-
sation sides into smaller chunks containing mostly speech.

3.2. Phone recognition

After removing non-speech frames from the input conversa-
tion sides, we used the DECIPHER speech recognition sys-
tem [9] developed by SRI International to perform both 1-best
and lattice phone decoding. Our particular version of DE-
CIPHER uses gender-dependent, monophone acoustic models,
where each monophone is modeled by a 3-state hidden Markov
model (HMM). The acoustic model was trained on the Switch-
board 1 corpus using MFCC features. Note that the phone decod-
ings were performed in open-loop mode (i.e. we used a unigram
phone language model with uniform probabilities).

3.3. Estimating relative frequencies of phone bigrams

3.3.1. 1-best phone decoding

Given a phone decoding (either 1-best or lattice), the next step
is to compute the relative frequency of each phone bigram. For
the case of a 1-best phone decoding, this step is straightforward—
we simply count the number of times each phone bigram appears
in the hypothesized phone sequence and then divide by the total
number of bigrams. Given some input audio, X , we have:

p�dijX� �
count�dijX�PM

k�� count�dkjX�
(1)

Note that d�� � � � � dM represents the set of unique phone bigrams,
and count�dijX� refers to the number of times phone bigram di
appears in the decoding of the input audio, X . The term, p�dijX�,
represents the observed relative frequency of di, which we can
interpret as the sample probability of di within the 1-best decoding
of X .

3.3.2. Lattice phone decoding

For the case of a lattice phone decoding, we can use the following
equation to compute the expected count of phone bigram di given
an input speech signal, X:

E�count�dijX�� �
X

Q

p�QjX� � count�dijQ� (2)

Here, Q represents a hypothetical phone sequence corresponding
to the entire utterance, X , and p�QjX� represents its posterior
probability, as determined by the phone recognizer. The term,
count�dijQ�, refers to the number of times di appears within
phone sequence Q. A standard forward-backward approach can
be used to efficiently compute the expected counts in equation (2).
Once we have a complete set of expected counts, we can use equa-
tion (1) to convert them into relative frequencies.

4. MODEL TRAINING AND SCORING

In this section, we describe two methods for training speaker
models and for scoring test-target pairs (i.e. a particular target

speaker model and test conversation side that are scored against
each other).

4.1. The log-likelihood ratio (LLR) approach

The traditional method for scoring a test-target pair in a phonetic
speaker recognition system is to compute the log-likelihood ratio
(LLR) of the target speaker model vs. a background model. For
this paper, we use the following equation to compute the LLR for
test conversation side A and target speaker model B:

LLR�A�B� �
MX

i��

p�dijconvSideA� log
p�dijspkB�

p�dijbkg�
(3)

Here, p�dijconvSideA�, p�dijspkB�, and p�dijbkg� refer to the
probability of phone bigram di for conversation side A, speaker
model B, and for the background model, respectively. For the
experiments in this paper, we used relative frequencies computed
from splits 6 through 10 as a background model—that is, to esti-
mate the p�dijbkg� terms in equation (3)—for all speaker models
belonging to splits 1 through 5, and vice versa. Similarly, we used
relative frequencies derived from the training conversation sides of
speaker B to estimate p�dijspkB� for all i � �� � � � �M . Note that
the form of the LLR used in equation (3) is equivalent to that used
in [1], [2], and [3].

Given the large number of speakers that were used to train
the background models (each background model comprises over
500 speakers), we might expect our estimates of p�dijbkg� to be
reasonably robust. The amount of data available for training the
speaker models, on the other hand, is considerably less—only 1 or
8 conversation sides, depending on the number of training conver-
sations. Thus, our estimates of p�dijspkB� may be fairly noisy,
particularly for the case of 1-conversation training. To make our
probability estimates more robust, we applied the following lin-
ear smoothing model to relative frequencies extracted for a given
speaker:

ps�dijspkA� � ��� �� � p�dijspkA� � � � p�dijbkg� (4)

In the above equation, ps�dijspkA� represents the smoothed rel-
ative frequency of di, which we compute by taking a weighted
average of p�dijspkA� and p�dijbkg�. The parameter, �, deter-
mines the amount of smoothing, and can be set anywhere between
0 and 1. Note that a similar smoothing model was independently
developed and reported by Baker, et al. in [10].

We can also define an analogous model for smoothing rel-
ative frequencies extracted from conversation sides (i.e. the
p�dijconvSideA� terms in equation (3)). However, in practice, we
have found the benefits of smoothing the p�dijconvSideA� terms
to be fairly negligible, at least for the purposes of computing LLR
scores. For this reason, we only apply smoothing to relative fre-
quencies that correspond to speaker models (i.e. the p�dijspkB�
terms).

4.2. The support vector machine (SVM) approach

In their 2003 NIPS paper, Campbell et al. demonstrated a phonetic
speaker recognition system based on support vector machines [3].
One of the main innovations of the paper was the following “ker-
nelized” version of the log-likelihood ratio:

k�A�B� �

MX

i��

p�dijconvSideA�p
p�dijbkg�

p�dijconvSideB�p
p�dijbkg�

(5)
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The above expression follows from replacing p�dijspkB� with
p�dijconvSideB� in equation (3) and then applying the approx-
imation, log x � x � �. If we ignore the offset term in the re-
sulting expression, we arrive at the kernel shown in equation (5).
Note that k�A�B� is simply an inner product of relative frequen-
cies of phone bigrams, where each relative frequency is divided by
the square root of the corresponding relative frequency from the
background model. To allow for affine decision boundaries, each
vector of relative frequencies can be augmented with a bias term.

Campbell et al. used the kernel in equation (5) to train SVM-
based speaker models [3]. For this paper, we used all of the con-
versation sides in the background model of a given speaker model
as negative training examples for that model. This amounts to
approximately 6740 negative training examples for every speaker
model. To balance the number of positive versus negative exam-
ples, we weighted the training errors for each positive example by
N
P

, where P and N represent the total number of positive and neg-
ative training examples, respectively.

Given that we apply linear smoothing to relative frequencies
when computing LLRs, it might seem reasonable to use a similar
form of linear smoothing on the p�dijconvSideA� terms in the
SVM kernel of equation (5). However, since SVM classifiers are
invariant to uniform scaling and shifting of the input feature vec-
tors, applying a linear smoothing model like that of equation (4)
would have no effect on the output results of an SVM-based scor-
ing system. For this reason, we do not apply smoothing for any
experiments involving SVMs.

5. EXPERIMENTS

Experiments were conducted on the 1-conversation and the 8-con-
versation training conditions. For each training condition, we ran
experiments on all four possible combinations of decoding method
and scoring method (i.e. 1-best decoding vs. lattice decoding and
LLRs vs. SVMs). As explained in section 4.1, equation (4) was
used to smooth the p�dijspkA� terms for the LLR scoring method.
Smoothing parameters for equation (4) were trained by finding
the value of � that minimizes the equal-error rate (EER) for each
combination of decoding method and number of training conver-
sations, as measured on NIST’s 2001 Extended Data set. Note that
the 2001 Extended Data set uses the Switchboard-1 corpus, which
is similar in format to Switchboard-2, but comprises an entirely
different set of speakers. To do SVM training and scoring, we
used the SVMlight package with c � � [11]. We also included a
bias term in the kernel of equation (5).

The EERs for the experiments are listed in table 1, and the
corresponding detection-error tradeoff (DET) curves are shown in
figure 1. We have also listed the relative reductions in EER that
are achieved by using lattice decodings over 1-best decodings in
table 1. The results show that the EERs for the lattice decodings
are substantially lower than the corresponding EERs for the 1-best
decodings. As shown in table 1, the lattice decodings are most
successful—both in terms of minimizing EER and in terms of the
improvement that they achieve over 1-best decodings—when used
in conjunction with SVMs.

To provide some perspective on these results, we note that the
EERs in table 1 for “LLRs, 1-best decoding” compare favorably
with those reported by Campbell et al. in [3] for the NIST 2003
Extended Data task (Campbell et al. reported EERs of 21.8% and
8.8% for LLR systems using 1 and 8-conversation training, re-
spectively). For the case of SVM-based scoring, Campbell et al.

# Training
Conversations

1 8

LLRs, 1-best decoding 16.4% 6.1%
LLRs, lattice decoding 10.5% 4.2%
relative EER reduction
using lattice decoding 36% 31%

SVMs, 1-best decoding 18.2% 5.9%
SVMs, lattice decoding 8.5% 2.0%
relative EER reduction
using lattice decoding 53% 66%

Table 1. EERs and relative reductions in EER from using lattice
decodings vs. 1-best decodings

Fig. 1. corresponding DET curves for the systems in table 1

reported EERs of 13.4% and 3.5% [3], which outperform those
of our “SVMs, 1-best decoding” systems. However, we note that
Campbell et al. used a “phonetic refraction” system, which makes
use of multiple phone decodings obtained from recognizers trained
on various languages. In spite of the fact that our system only
uses a single English phone recognizer, the EERs achieved by our
“SVMs, lattice decoding” systems are, to the best of our knowl-
edge, the lowest reported for a phonetic speaker recognition sys-
tem on the NIST 2003 Extended Data task.

These results suggest that lattice decodings may yield more
robust estimates of the relative frequencies of phone bigrams than
1-best decodings. To support this claim, we can examine the �

parameters that were used to smooth estimates of p�dijspkA� in
the LLR systems. Table 2 shows the � values that were trained
for every combination of decoding method and number of training
conversations. Note that the � values represent the optimal amount
of smoothing for minimizing EER on the Switchboard-1 data, and
should provide some indication of the robustness of the original
phone bigram statistics (i.e. lower � values presumably point to
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# Training
Conversations

1 8

1-best decoding 0.955 0.670
lattice decoding 0.920 0.040

Table 2. � values trained on the Switchboard-1 corpus

# Training
Conversations

1 8

phonetic system
(SVMs, lattice decoding) 8.5% 2.0%

GMM system 6.6% 2.6%
GMM + phonetic system 5.0% 1.4%

Table 3. EERs for the individual systems and for the combined
GMM + phonetic system

more sufficiently-trained models). As shown in the table, the �
values are quite large for each of the systems except for the “lattice
decoding, 8-conversations” system, where � is only 0.040. Note
that in every case, the � values are smaller for the lattice decodings
than for the 1-best decodings. Based on this, we might surmise that
relative frequencies obtained from lattice decodings tend to be less
noisy than those obtained from 1-best decodings.

As a final experiment, we tried combining the output scores
from the “SVMs, lattice decoding” systems with scores obtained
from a GMM-based speaker recognition system developed at SRI
International [9]. The combination was performed by taking a
simple weighted average of output scores. We used the Switch-
board-1 corpus to train the combination weights. A comparison
between the EERs of the individual and combined systems is pro-
vided in table 3, and the corresponding DET curves are shown
in figure 2. The results show that the phonetic approach used by
the “SVMs, lattice decoding” system is, too a significant extent,
complementary to the GMM system. According to table 3, the
combined system achieves substantial reductions in EER on both
the 1-conversation and the 8-conversation conditions.

6. CONCLUSIONS

In this paper, we compared 1-best phone decodings vs. lattice
phone decodings for the purposes of performing phonetic speaker
recognition. In each experiment, the lattice decodings achieved
relative reductions in EER of between 31% and 66% below the
EERs of the 1-best decodings. Our best lattice decoding system
achieves an EER of 2.0% on 8-conversation training and 1.4%
when combined with a GMM-based system. These results support
the view that lattice decodings provide a much richer sampling of
phonetic patterns within speech than 1-best decodings.
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Fig. 2. corresponding DET curves for the systems in table 3
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