
ABSTRACT

This paper presents a speech enhancement approach based on 

speech spectral complex Gaussian Mixture Model (GMM). First, a 

construction algorithm of speech spectral GMM is introduced and 

it is based on the distance measure of speech spectral Gaussian 

probability. Then a noise estimation algorithm based on the GMM 

is proposed in the Maximum Likelihood criterion using the 

Expectation-Maximum (EM) algorithm. Speech enhancement 

experimental results show that the GMM-based MMSE estimators, 

especially the GMM-based MMSE short-time spectral estimator, 

can afford better performance than alternative speech enhancement 

algorithms and the proposed noise estimation algorithm can 

improve the enhancement performance more, especially at low 

SNRs.

1. INTRODUCTION 

Speech quality and intelligibility might significantly deteriorate in 

the presence of background noise and suppression of additive 

noise is crucial to all types of speech applications including speech 

coding and speech recognition. Speech enhancement has therefore 

attracted a great deal of research interest for the past two decades.  

Many speech enhancement approaches are based on the 

Gaussian assumption of speech signals. Spectral subtraction is an 

optimal speech spectral component variance estimator [3], which 

is developed with the speech spectral Gaussian assumption. With 

the assumption, speech spectra, amplitude and log-amplitude can 

be estimated in the minimum mean-square error criterion (MMSE) 

and the obtained estimators are Wiener filter [2], the 

MMSE-STSA estimator [5] and the MMSE-LSA estimator [6], 

respectively. 

The performances of the above estimators are greatly dependent 

on the accuracy of the speech spectral Gaussian model. In fact, the 

model parameters are updated by a recursive averaging with a time 

constant comparable to the correlation time of speech variation [5]. 

The parameter update gives a coarse estimate of the speech 

parameter and it may constrain the enhancement performance 

seriously. It is obvious that a more detailed and more accurate 

description of speech distribution, i.e., Gaussian Mixture Model 

(GMM), can provide better performance. 

In [8], a speech log-spectral GMM is used to construct speech 

MMSE estimator. In the log-spectral domain the environmental 

function is nonlinear and the compensation was implemented on a 

maximum assumption in the production of noisy speech 

log-spectra. Thus the approximation also constrains the speech 

enhancement performance. But in the spectral domain, the 

environmental function is linear and the compensation can be 

implemented more directly and more accurately. 

In [1], a speech spectral HMM is used to construct speech 

spectral estimators. The HMM is built from the AR-HMM in the 

time domain. Given the Fourier transform )(θA  of the AR 

coefficients, the power spectral densities of the corresponding 

process can be formulated as 

22 )(/)( θσθ AS =                   (1) 

where 2σ  is the gain of the AR process. Besides, the covariance 

matrices of the HMM’s can be formulated as 
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where U  is a KK ×  matrix whose ),( nk  element is the complex 

exponential )/2exp( Kknj π−  and S  is a KK ×  diagonal matrix 

whose k-th diagonal element is given by )/2( KkS π .

According to equations (1,2), an AR-HMM with mixture 

components can be easily converted to HMM in the spectral 

domain. Based on the speech spectral HMM, speech enhancement 

algorithms can be constructed conveniently [1]. It is well known 

that GMM is a special case of HMM, with which time correlation 

is considered. In speech enhancement, since the transcriptions are 

various, it is difficult to segment the observed speech spectra 

accurately with just only one HMM. Thus GMM can provide 

almost the same speech clustering information as HMM in this 

case. 

Note that in [1], the speech model in the spectral domain is 

heavily dependent on the accuracy of AR coefficients, which are 

difficult to extract accurately for some consonants. In this paper, 

the speech model in the spectral domain is constructed more 

accurately. It is built directly in the spectral domain using an 

algorithm similar to the K-means clustering algorithm using the 

Gaussian probability as the distance measure. 

Based on the constructed speech spectral complex GMM, noise 

estimation is implemented in the ML framework using the EM 

algorithm. With the noise estimation, better enhancement 

performance can be obtained using the proposed GMM-based 

enhancement algorithms, especially in low SNR environments. 

2. GMM-BASED MMSE ESTIMATORS 

In [1], the HMM-based MMSE estimators of speech spectra, 

magnitude, magnitude-squared spectra and log-spectral magnitude 

are constructed. Here, we will introduce the estimators based on 

speech spectral GMM. 

For stationary stochastic signals, the frequency spectrum can be 

modeled as the complex Gaussian distribution with zero means. 

Thus noise spectra can be modeled as single Gaussian model 
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Speech is a non-stationary process, but over short duration 

(typically 20-30 ms) speech signals can be considered stationary 
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and speech spectra satisfy Gaussian distribution. To deal with 

speech non-stationarity, we model the speech distribution with a 

mixture of Gaussian components, each representing a different 

class and assume that speech spectra in one class are independent of 

those in others. So the distribution of the speech spectral vector can 

be formulated as a weighted sum of Gaussian distributions over all 

classes 
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where M  denotes the number of mixture components, mc  is the 

weighted coefficient of component m and xmkλ  is the k-th speech 

variance of component m.

Since speech spectra of one mixture component are assumed to 

be independent of those of others, the estimators can be 

implemented as a weighted sum of the MMSE estimators over all 

mixture components, i.e. 
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where )|( YmP  is the class-conditional probability given Y .

2.1 Calculation of the class-conditional probability 

Since the speech spectral distribution and the noise spectral 

distribution are illustrated by Eq. (4) and Eq. (3), respectively, and 

the environmental function in the spectral domain is linear, the 

noisy spectral model can be formulated as 
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Thus the class-conditional probability given the noisy vector can be 

formulated as 
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2.2 Construction of the MMSE estimators 

The last term of equation (5) is the a posteriori estimator given the 

noisy vector and the mixture component, which means that the 

speech distribution is specified by the component. In this case, the 

estimator can be constructed in the MMSE criterion. 

If we define 

[ ]T
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then Eq. (5) is the GMM-based MMSE short-time spectral 

estimator (GMM-STS). The last term of Eq. (5) can be formulated 

as 
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In fact the above equation is the famous Wiener filter if component 

index m is ignored. With the GMM assumption, the GMM-STS 

estimator is a weighted sum of Wiener filters over all mixture 

components, and the weighted coefficients are the a posteriori

probabilities of the mixture components given the noisy vector. 

If we define 

[ ]TKXXX 22

1

2

0 ||,,||,||)( L=Xf

then Eq. (5) is the GMM-based MMSE magnitude-squared spectral 

estimator (GMM-MSS). The last term of Eq. (5) can be formulated 

as 
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The estimator with single Gaussian model was published in [10]. 

If we define 

[ ]TKXXX ||,|,||,|)( 10 L=Xf

or

[ ]TKXXX ||log,|,|log|,|log)( 10 L=Xf

then Eq. (5) is the GMM-based MMSE short time spectral 

amplitude estimator (GMM-STSA) or the GMM-based MMSE 

log-spectral amplitude estimator (GMM-LSA). The last terms of 

Eq. (5) were solved in [5] and [6], respectively. 

3. CONSTRUCTION OF SPEECH SPECTRAL 

COMPLEX GAUSSIAN MIXTURE MODEL 

We train clean speech spectral complex GMM from high quality 

speech data using a clustering algorithm, which is different from 

the K-means clustering algorithm broadly used in speech 

recognition. Since speech spectra are assumed to be Gaussian 

distributed, the complex Gaussian probability density is an 

appropriate distance measure to cluster speech spectra. 

The construction of speech spectral GMM is an iterative process. 

Let the training data consist of N clean speech spectral frames 

},...,{ 1 N
XX=X . }0,1,,{ KkMmcmxmk ≤≤≤≤= λ  is known 

initial parameters, }0,1,ˆ,ˆ{ˆ KkMmcmxmkn ≤≤≤≤= λ  is the 

parameters to be estimated in the current iteration and mn,γ  denotes 

the a posteriori probability of the component given the 

observations as 
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the estimated parameters satisfy the following equations 
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4. NOISE ESTIMATION BASED ON SPEECH 

SPECTRAL GAUSSIAN MIXTURE MODEL 

For each utterance, an utterance-specific noise model can be 

constructed on the noisy signals given the speech spectral GMM. 

In noise model (3), only noise variances need to be estimated and 

the estimation can be implemented in the ML framework using the 

EM algorithm. 

The parameters are estimated by maximizing the following 

auxiliary function 
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where n  and n  are known and unknown noise parameters, 

respectively, M  is mixture component series and },...,{ 1 TYYY =  , 

},...,{ 1 TXXX =  are known corrupted and unknown clean speech 

spectral vectors series. 

    Consider the following equations 
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The auxiliary function can be expanded as 

By taking the gradient of ),( nnQ  with respect to noise 

parameter Kknk ,...,0,ˆ =λ  and letting the gradient zero, we obtain 

the estimates of noise parameters, for Kk ,...,0=
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5. EXPERIMENTAL EVALUATION 

In this section, speech enhancement experiments are performed to 

evaluate the performance of the proposed algorithms. 

5.1 Experimental Settings 

In the experiments, all utterances are sampled at 8kHz with a 16bit 

resolution. The database is composed of two independent sections. 

Section-1, which is used to train the speech spectral complex 

GMM, includes 4880 Mandarin utterances from 80 speakers (40 

males and 40 females). Section-2, which is used for performance 

evaluation, consists of speech files collected from 10 speakers (5 

males and 5 females), each delivering 10 Mandarin utterances. We 

obtain the noisy speech by adding white noise and factory noise to 

the clean speech with noise amplitudes being adjusted to achieve 

SNRs of 0, 5, 10, 15 and 20dB, respectively. The noise data are 

chosen from the NOISEX-92 database [7] resampled to 8kHz. 

In all the experiments, the frame length is 256, which 

corresponds to 128=K . Frame overlapping of 50% is used so that 

the reconstructed speech signals are synthesized as in [4]. 

A diagonal-variance GMM with 256 components for 129-d 

speech spectral vectors is trained using the high quality speech 

data of Section-1 to represent the distribution of clean speech 

spectral vectors. 

5.2 Experimental evaluation on the proposed approach 

Speech enhancement experiments are performed on the proposed 

algorithms in comparison with the alternative ones. 

The alternative algorithms include MMSE-STS (wiener filter), 

MMSE-MSS, MMSE-STSA and MMSE-LSA, all of which have 

been published in [2], [10], [5] and [6], respectively. In all the 

algorithms, noise statistics are estimated using a rough Voice 

Activity Detector. 

 0dB 5 dB 10 dB 15 dB 20 dB 

MMSE-STS 5.60 9.82 14.26 18.58 22.79 

MMSE-MSS 4.05 8.07 12.6 17.19 21.78 

MMSE-STSA 5.72 9.95 14.36 18.64 22.79 

MMSE-LSA 6.17 10.42 14.77 18.95 22.99 

GMM-STS 8.91 12.65 16.25 19.73 23.26 

GMM-MSS 7.50 11.47 15.27 18.94 22.56 

GMM-STSA 7.16 11.32 15.32 19.04 22.68 

GMM-LSA 7.66 11.74 15.62 19.23 22.79 

GMM-STS-NE 9.22 12.66 16.16 19.42 22.77 

GMM-MSS-NE 8.45 12.04 15.63 18.97 22.38 

GMM-STSA-NE 7.33 11.28 15.24 18.78 22.23 

GMM-LSA-NE 7.81 11.66 15.49 18.91 22.28 

Table 1. SNR of different algorithms with noise statistics estimated before 

speech begins in additive white noise 

 0dB 5 dB 10 dB 15 dB 20 dB 

MMSE-STS 4.51 8.71 13.07 17.38 21.95 

MMSE-MSS 3.59 7.57 12.00 16.54 21.36 

MMSE-STSA 4.44 8.70 13.04 17.37 21.89 

MMSE-LSA 4.68 8.99 13.30 17.56 22.01 

GMM-STS 4.87 9.33 13.45 17.41 21.58 

GMM-MSS 3.97 8.29 12.50 16.60 20.89 

GMM-STSA 4.04 8.59 12.90 17.02 21.14 

GMM-LSA 4.32 8.90 13.18 17.22 21.29 

GMM-STS-NE 5.10 9.48 13.49 17.33 21.04 

GMM-MSS-NE 4.46 8.83 12.82 16.74 20.55 

GMM-STSA-NE 4.44 8.84 13.07 16.99 20.74 

GMM-LSA-NE 4.70 9.10 13.28 17.14 20.83 

Table 2. SNR of different algorithms with noise statistics estimated before 

speech begins in additive factory noise 

The proposed GMM-based enhancement algorithms with the 

rough Voice Activity Detector are implemented and they are 

denoted as GMM-STS, GMM-MSS, GMM-STSA and GMM-LSA, 

respectively. Besides, the proposed GMM-based enhancement 

algorithms with the noise estimation algorithm described in 
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Section 4 are also evaluated. They are denoted as GMM-STS-NE, 

GMM-MSS-NE, GMM-STSA-NE and GMM-LSA-NE, 

respectively. 

Table 1 and Table 2 display the SNRs of enhanced speech data 

using the 12 algorithms in additive white noise and additive factory 

noise, respectively. It is obvious that all GMM-based estimators are 

superior to the corresponding MMSE estimators at almost all noise 

levels in both noise types except at 20dB SNR in factory noise.  

Furthermore, from Table 1 and Table 2, it is also showed that the 

noise estimation algorithm described in Section 4 can give more 

performance improvement in low SNR environments. But at high 

SNRs the noise estimation algorithm does not take its advantage, 

since the rough VAD can give enough accurate noise estimates at 

high SNRs. 

Besides, it is obvious that GMM-STS and GMM-STS-NE 

achieve the best performance in all the GMM-based estimators and 

in all the GMM-based ones with noise estimation, respectively. The 

results are also confirmed in [1]. Clearly, the objective function of 

spectral estimators is consistent with the SNR test, which is a wave 

comparison between the tested sentences and the clean ones. 

Similar results also appear in the subjective quality evaluation. 

Even if the MMSE estimators are applied, the remained noises are 

still distinct and annoying. But when the GMM-based estimators 

are applied to noisy data at 5dB input SNR, for the enhanced 

speech data, especially those processed by GMM-STS and 

GMM-STS-NE, a significant reduction in the noise level is 

perceived and the remained noise is little. The phenomena are also 

testified in the next section. 

5.3 Data analysis 

Sonograms of the clean, noisy, and several enhanced speech using 

MMSE-STS, GMM-STS and GMM-STS-NE at 5dB SNR are 

showed in Figure 1. From the figure, it is obvious that although 

MMSE estimators are applied, speech signals are still drowned in 

the remained noises and the GMM-based estimators can give 

greater noise reduction than the MMSE ones. Besides, the figure 

shows that GMM-based estimators with noise estimation can give 

even more noise reduction while main speech information is kept. 

From the clean wav plot it is clear that the original speech is still 

degraded very lightly by noises, which make the sonogram a little 

dark when speech is absent. In the sonogram of “GMM-STS-NE”, 

it is clear that all these dark areas are removed while the main light 

areas are remained. In comparison of the sonogram of “clean”, a 

little speech distortion exists in the one of “GMM-STS-NE” since 

the sonograms in the high frequency domain is a little different 

when speech is present. It can be concluded that with 

GMM-STS-NE, almost all noises are removed, while almost all 

main speech information is remained though a little speech 

distortion is introduced. 

6. CONCLUSION 

In this paper, the MMSE estimation based on speech spectral 

complex GMM is proposed to estimate uncorrupted speech spectra, 

magnitude-squared spectra, spectral amplitudes and log-spectral 

amplitudes. Based on the speech spectral GMM, noise estimation 

from noisy data is introduced using the EM algorithm in the ML 

framework. Experimental results show that the GMM-based 

MMSE estimators, especially the GMM-based MMSE short-time 

spectral estimator, can afford better performance than alternative 

speech enhancement algorithms and with the noise estimation the 

enhancement algorithms can introduce better enhancement 

performance. 
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