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ABSTRACT

This paper proposes a new algorithm to estimate and suppress 

highly non-stationary background noise from speech. The 

algorithm consists of two spectral detectors. The first one uses 

strict criteria and is based on Fourier transform of AMDF 

(Average Magnitude Difference Function). The second one uses 

loose criteria and is based on variable start minima search. By 

combining the two detectors, the algorithm detects and tracks the 

sudden change of noise energy level instantaneously. The 

proposed algorithm is then merged to conventional MMSE-

STSA to suppress non-stationary noise in speech. Simulation 

results are given to show the superiority of our proposed 

algorithm.

1. INTRODUCTION 

Real-time noise power spectrum estimation is a crucial part in 

many speech quality enhancement algorithms based on 

frequency-domain. It is even more difficult to estimate those 

noises with nonstationary characteristics. Existing algorithms for 

nonstationary noise estimation can be divided into several 

categories: based on Minima Tracking [1]-[3]; based on 

Recursive Averaging [4]-[6], [10]; or based on Wavelet 

Threshold [7], etc.  

In real environments, some types of noise are highly 

nonstationary and may arise and disappear suddenly. For 

example, a car passes by at a speed of 80km/h, a refrigerator 

starts working suddenly, or a car engine is just started. Few 

noise estimation algorithms work well for these types of noise. 

Particularly, most of them have several seconds’ lag to track the 

noise energy change. 

In this paper, we propose an instant noise spectral estimation 

algorithm to track noises whose energy change sharply.  We use 

two speech spectral presence detectors with strict/loose criteria 

respectively to detect the rising edge of noise power spectrum 

and therefore follow it. Simulations show that compared to most 

of the other methods, the proposed method significantly reduces 

the tracking lag.  

2. ALGORITHM DESCRIPTION 

Let x(n) and d(n) denote speech and uncorrelated additive noise 

signals, respectively, where n is a discrete-time index. The 

observed signal y(n), given by y(n) = x(n) + d(n), is divided into 

overlapping frames by the application of a window function and 

analyzed using the short-time Fourier transform (STFT). 

Specifically, 
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where k is the frequency bin index, l is the time frame index, h is 

an analysis window of size N, and M is the frame update step in 

time.  

The whole algorithm consists of four parts: Speech spectral 

presence detector with strict criteria by Fourier transform of 

AMDF; Speech spectral presence detector with loose criteria by 

variable start minima search; Noise sudden-rising detection; 

Recursive averaging.  

2.1. Speech spectral presence detectors 

2.1.1. Strict detector based on Fourier transform of AMDF 

AMDF (Average Magnitude Difference Function) is a well-

known algorithm for extracting pitches from a speech [8]. It is 

expressed by the following equation: 
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where n is the time-shift index, N is the length of window, l and 

M are the same as (1). 

We propose that by using the Fourier Transform of AMDF (FT-

AMDF), the dominant spectral component can be detected 

steadily from noisy spectrums, even when signals are severely 

corrupted by non-stationary noises.  

Define D(k, l) as the Fourier Transform of AMDF: 
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where l and k are the same as (1), b is an optional windowing 

function.

A linear smoother is then applied along the frequency axis and a 

recursive averaging is applied along the frame axis, 
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where
s
is a smoothing factor, Q is the length of the smoother. 

Each frame is then normalized by subtracting its median value, 
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 refers to the median value of {Ds(0, l), 

Ds(1, l), … , Ds(N-1, l)}.

Thereafter, we use the following equations to identify the speech 

spectral area, 
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s is the threshold to determine if it is a speech spectral 

component.

2.1.2. Loose detector based on variable start minima search 

A fixed start minima search algorithm has been described by 

Martin [1] and Cohen [4] as speech spectral detectors. In our 

algorithm, we use a variable start minima search algorithm to 

detect speech spectrum with loose criteria.  

In a given frame, speech presence within a frequency band is 

determined by the ratio between the local energy ),( lkS  of the 

noisy speech and its minima ),(min lkS  within a specified time 

window.

),( lkS  is calculated by smoothing the magnitude squared of the 

spectrum of noisy speech in time and frequency, as shown in the 

following equation, 
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where
l
is a smoothing factor, W is the length of the smoother. 

),(min lkS  is calculated by the following variable start minima 

search algorithm:  

In a specific subband k, we search minima of ),( lkS  within an 

L-sample window from nL+l0+1 to nL+ l0+L. l0 indicates the 

start of search window, where Ll00 . Initially l0 is set to 

zero when the algorithm just starts from the first frame (l = 1). 

Then we have the following recursive equations with the 

increasing of l,
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Let ),(/),(),( min lkSlkSlkSr
, then the speech presence by 

loose criteria is calculated by: 
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Figure 1. Speech spectral detection (solid contour is from the 

strict detector, dash contour is from the loose detector) 

l is the threshold to determine if it is a speech spectral 

component by loose criteria.  

To the loose detector, if l0 is fixed, usually the detector is apt to 

misjudge the rising noise spectrum as speech, as the areas within 

the dash contours illustrated in Figure 1a). In the figure, a piece 

of speech with 8kHz sampling rate is used. The signal is noise-

free from 0s to 0.88s and from 3.52s to 4.4s. From 0.88s to 

3.52s, it is corrupted by Gaussian white noise with -10dB SNR. 

Solid contour is the speech spectrum detected by the strict 

detector. Dash contour is the speech spectrum detected by the 

loose detector. From 0.88s to 2.6s, the noise spectrum is 

misjudged as speech spectrum by the loose detector. This is 

because in the loose detector, a speech is divided into many 1~2 

seconds’ long segments before processing. When the noise 

energy rises sharply within the pre-set time slot, the loose 

detector is not able to distinguish this from a speech rise.  

On the other hand, the figure also shows that the strict detector 

can still steadily find speech components in this situation. This is 

because FT-AMDF is an effective harmonic spectral structure 

enhancer. It is particularly suitable to be used to detect voiced 

speech components from noisy spectrums. At the same time, 

unvoiced speech with a strong and broad spectrum will also be 

enhanced and detected by FT-AMDF. The drawback of the strict 

detector is it may lose some weak voiced speech when the 

energy of the speech is too low.  

2.2 Noise energy rise detection and loose detector update 
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Figure 2. Flowchart of the proposed algorithm 

We have the following rule to judge if there is a sudden-rise of 

noise energy: if at a specific frame, the algorithm does not find 

dominant speech components by the strict detector while the 

number of speech components found by the loose detector is 

more than a specified threshold, we conclude that the loose 

detector makes a wrong judgment. This is expressed by the 

following equation: 

elselN

lkIandlkIiflN

r

l

k

ls

k

sr

,0)(

)),(()),((,1)(  (11) 

where Nr(l)=1 indicates that the noise energy changing sharply 

in frame l.

When the algorithm detects there is a sudden rise of noise 

energy, we recalculate the starting position of search window 

and the local energy ),( lkS :
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We call equations (12) as loose detector update. Its effect is to 

recalculate signal energy S (k, l) and start a new round of 

minima search. Therefore the loose detector can update its 

parameters to keep up with the change of energy.  

The outcome after using loose detector update is illustrated by 

the contours in Figure 1 b).  

Obviously, by using loose detector update, the misjudging area 

in b) is significantly reduced, compared to the one in a). 
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Figure 3. Noise energy estimated by various algorithms 

2.3 Recursive averaging 

The final decision of speech spectral presence is made by the 

combination of ),( lkIl
 and ),( lkIs

. Let ),( lkI  denote if the 

spectrum component at (k, l) is a speech spectrum. ),( lkI  is 

evaluated by the logical OR of ),( lkIl
 and ),( lkIs

:
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Finally the noise spectrum is estimated by the following 

equation:
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where
d

 (0<
d

<1) is a smoothing parameter.  

The flowchart is illustrated in Figure 2.  

3. SIMULATION RESULT 

3.1 Spectrum observation 

The speech used in Figure 1 is used again to verify our proposed 

scheme. The following parameters are used in the proposed 

algorithm: N = 256; M = 64 (75% overlap); b = h = Hanning 

window; W = Q = 1; P = 2; s = 0.6; d = 0.95; l = 0.8; L = 125; 

l = 8; s = 5; s = 3; l = 150.

Three algorithms, including Spectral Minima Tracking (SMT) 

[2], Weighted Noise Estimation (WNE) [10], and Minima 

Controlled Recursive Averaging (MCRA) [4], are selected to 

compare with the proposed algorithm.  

The energy of the estimated noise is illustrated in Figure 3. It 

shows that the estimation curve by SMT rises slowly and needs 

2~3 seconds to get a stable output. Occasionally, it 

overestimates noise when there are speech spectrums. WNE 

follows the expectation of noise promptly; however it obviously 

overestimates noise when there is speech. MCRA works very 

well when it gets steady, but it reacts 1~2 seconds slower than 

the noise rises. Comparing with them, our method reacts to noise 
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rise within 100ms and tracks noise more quickly than SMT and 

MCRA, and more accurately than WNE.  

The graph proves that our proposed method can instantly react 

and track sudden changes of noise quicker than other methods. 

Also it minimizes the possibility of mistakenly following speech 

spectral components. 

3.2 Performance in speech enhancement 

To evaluate the performance of the proposed algorithm in 

application of speech quality enhancement, we use it in MMSE-

STSA (Minimum Mean-Square Error Short-Time Spectral 

Amplitude Estimator), a conventional speech quality 

enhancement algorithm. The detail of MMSE-STSA is described 

in Ephraim’s work [9]. For comparison, MCRA is used as the 

competitive algorithm. Both the output of the proposed 

algorithm and MCRA are merged into MMSE-STSA as its noise 

estimation part. Then we evaluate the quality of their enhanced 

speech.

Thirty pieces of speech, including fifteen males and fifteen 

females, are randomly chosen from the TIMIT database. Two 

pieces of noise recorded from real environments are selected. 

The first one is recorded from where a car with a high speed 

passes by a microphone. The other one is recorded close to 

where a man starts his car’s engine. The car-pass-by noise is 

added in the middle of each speech. The engine-start noise is 

added into speech in three ways: Engine starts 1 second earlier 

than speech starts; engine and speech start at the same time; 

engine starts 1 second later than speech starts.  

We use PESQ (Perceptual Evaluation of Speech Quality) [11], 

the current ITU objective speech quality evaluation standard to 

evaluate the performance of the proposed speech quality 

enhancement scheme. The PESQ improvement values are 

averaged over all of the thirty pieces of speech. 

Table 1 shows the simulation results. From the table, we can find 

our method performs steadily better than MCRA.  

Subjective listening tests confirm the result of objective 

evaluations. Especially at the time when the noise just rises, the 

output of MCRA+MMSE-STSA always has 1~2 second’s 

disturbance of noise, while the proposed scheme reduces this 

disturbance period to less than 100ms.  

4. CONCLUSIONS 

We propose an instant noise spectral estimation algorithm to 

estimate noise power spectrum with highly nonstationary energy 

in speech. An FT-AMDF method is proposed to detect dominant 

speech components in noisy spectrums with strict criteria. A 

variable start minima search method is introduced to detect 

speech components with loose criteria. By comparing the 

outputs of the two detectors, rise edges of noise energy are 

identified. We show that the proposed method significantly 

reduces the tracking lag of noise change, compared to other 

methods. And we show that the new algorithm is superior to 

other competitive methods in the performance of suppressing 

highly nonstationary noise.  
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Table 1. Average PESQ improvement of proposed scheme and 

MCRA+MMSE-STSA scheme 

Car engine and speech start 

           Noise 

SNR (dB) 

Cars 

pass  

by  

Speech

is 1s 

later

At the  

same 

time 

Speech

is 1s 

earlier 

MCRA 0.312 0.355 0.303 0.133 10

Proposed 0.346 0.374 0.317 0.137 

MCRA 0.340 0.388 0.315 0.136 5

Proposed 0.419 0.461 0.379 0.176 

MCRA 0.221 0.290 0.192 0.017 0

Proposed 0.367 0.428 0.304 0.095 

MCRA 0.061 0.158 0.050 -0.060 -5

Proposed  0.204 0.245 0.101 0.018 
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