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ABSTRACT

The minimum classification error, and generalized proba-
bilistic descent (MCE/GPD) algorithm is a very popular
and powerful framework for building classifiers with many
practical applications. This paper first presents a theoret-
ical analysis of MCE/GPD for a 2-class Gaussian classi-
fication problem. We show that the algorithm converges
to the optimum classifier, and that further iterations lead
to increasing the inter-class distance which increases the
classifier variance without contributing to lowering its er-
ror. The theoretical results are supported by simulations
for Gaussian classifiers, and generalize to a hidden Markov
model speech recognition problem.

1. INTRODUCTION

A general paradigm for the design of parametric classifiers
that capitalizes on minimizing the classification error was
proposed in [1]. The basic idea is to develop a smoothed
estimate of the classification error and minimize this es-
timate with respect to the parameters of interest using
gradient descent. Thus, this approach is often referred to
MCE/GPD, where MCE stands for minimum classification
error, and GPD for generalized probabilistic descent. Since
its advent this framework has found great success in many
practical classification problems, and we refer the reader
to [3] for a complete exposure.

This paper first focuses on a simple learning scenario,
where the MCE/GPD algorithm is used to learn the means
of a Gaussian classifier for a simple two-class problem. This
setting leads to a relatively simple learning algorithm and
allows us to derive detailed expressions for the evolution of
the means, and both the true and smoothed errors, and to
show the convergence of the classifier to the Bayes solution.
In addition, we relate further iterations to increasing the
variance of the classifier, and hence reducing its generaliza-
tion capability. This behavior, referred to over-training, is
often observed in practical applications of the MCE/GPD
framework. In spite of the simplicity of the analyzed al-
gorithm it can be readily identified as a special case, i.e.,
Viterbi training, of MCE/GPD learning of the means of
Gaussian mixture hidden Markov models (HMMs)[5]. The
latter algorithm is of great practical interest especially in
speech recognition applications. This similarity motivates
us to believe that the theoretical results obtained for the
simple Gaussian classifier can carry over to MCE/GPD
learning of Gaussian mixture HMMs. This theory is ex-
perimentally verified, using a setup to be detailed in the

paper, in E-set speech recognition experiments, where it
is shown that the behavior of the learning agrees with the
theoretical results obtained for the simple Gaussian classi-
fier.

The rest of the paper is organized as follows. The sim-
ple classification problem and the associated discriminative
learning algorithm are formulated in Section 2. Section 3
contains the analysis results of the algorithm of Section 2.
Experimental results on E-set speech recognition are given
in Section 4. Finally Section 5 summarizes our findings.

2. ALGORITHM FORMULATION

This section presents a simple classification problem for
which the discriminative training algorithm of [1] will be
formulated and analyzed. Assume we have two classes Cj

where j ∈ {0, 1}. For class Cj the probability density
function (pdf) of the observations is Gaussian given by
N (θj , σ

2), where θj is the mean for class Cj , and σ2 is a
common variance. The solution of the above classification
problem is known [2]. Assuming, without loss of general-
ity, that the two classes are equiprobable, and θ1 > θ0, the
optimal classifier reduces to comparing an observation x to
a threshold t = (θ1 + θ0)/2, and deciding C1 if x > t, and
C0 otherwise.

Define the misclassification function of class Cj as

dj(x,µj , µ1−j) = log p1−j(x) − log pj(x)

=
(µ1−j − µj)x

σ2
+

(µ2
j − µ2

1−j)

2σ2
(1)

where we also note that d1−j(x, µj , µ1−j) = −dj(x, µj , µ1−j).
Also define the smoothed error for pattern x as e(x,µ) =
Φ(dj(x,µ)) x ∈ Cj , where Φ() is the standard Gaussian
CDF (cumulative density function).1 Applying the dis-
criminative training paradigm of [1], with these definitions
in mind, to learn the class means in the above classification
problem, it is easy to derive the following update equations

µj(n+1) =

8>><
>>:

µj(n) + ε

σ2 φ(dj(x(n + 1), µ(n)))(x(n + 1) − µj(n))
if x(n + 1) ∈ Cj ;

µj(n) − ε

σ2 φ(dj(x(n + 1), µ(n)))(x(n + 1) − µj(n))
if x(n + 1) ∈ C1−j .

(2)
where µj(n), and µ1−j(n) represent the mean variables in
the misclassification function at instant n, x(n + 1) repre-
sent the observation at time n + 1, ε is the learning rate,

1Without loss of generality, the sigmoid function in [1] is
replaced by the Gaussian CDF here.
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and φ() is the standard Gaussian function. These update
equations are known to minimize the expected value of the
smoothed error given by E[e(x, µ)], where E is the expecta-
tion operator with respect to p(x). The expected true error
can be obtained by replacing the Gaussian CDF by a unit
step function. The mean update in Equation (2) together
with the associated expected values of the smoothed error,
and true error are the focus of the analysis in the following
section.

3. ALGORITHM ANALYSIS

In this section we perform statistical analysis of the algo-
rithm given in Section 2. In particular, we focus on deriving
difference equations for E[µj(n + 1)], and the associated
decision threshold. In addition we calculate expressions
for the expected values of the smoothed and true error.
We finally study the evolution of the variance of the de-
cision threshold. These are referred to as transient, error,
and variance analysis respectively. It is worth noting the
similarity of some used techniques to [4], and that many
derivations are omitted for lack of space, and can be found
in [6].

3.1. Transient Analysis

This subsection derives difference equations for E[µj(n +
1)], and the associated decision threshold followed by study-
ing the convergence behavior of the decision threshold. We
start by the difference equation for class means. To this
end we write

E[µj(n + 1)|µ(n)] =PjE[µj(n + 1)|µ(n), x(n + 1) ∈ Cj ]+

P1−jE[µj(n + 1)|µ(n), x(n + 1) ∈ C1−j ]

(3)

where Pj , and P1−j are the a priori probabilities of classes
Cj , and C1−j respectively. Both expectations on the right
hand side of Equation (3) can be evaluated using tech-
niques for calculating expectations of non-linear functions
of Gaussian variables [6]. Once these expressions are ob-
tained, and making the assumptions2 Pj = P1−j = 0.5, and
µ(n) is concentrated3 at E[µ(n)], and denoting E[µj(n +

1)] = µj(n + 1), we get a difference equation that describes

the evolution of the mean µj(n + 1) during learning.

Further, if we define t(n) = (µ1(n) + µ0(n))/2 as the
evolution of the decision threshold during learning, and
substitute in the difference equation of mean evolution, for
j = 0, 1, together with some algebraic simplifications we

2Any values can be used as long as we use the same values
for presentation of training examples.

3This assumption is used to avoid integrating out the condi-
tioning in Equation (3), and is known to be reasonable for small
learning rate[4].

arrive at the following recursion for the decision threshold

t(n + 1) = t(n) +
0.25ε∆(1)µ(n)

σ

q
∆(1)µ(n)

2
+ σ2

×

2
4φ

0
@∆(1)µ(n)(θ1 − t(n))

σ

q
∆(1)µ(n)

2
+ σ2

1
A

−φ

0
@∆(1)µ(n)(t(n) − θ0)

σ

q
∆(1)µ(n)

2
+ σ2

1
A
3
5 (4)

where ∆(j)µ(n) = µ1−j(n) − µj(n).
Now when n → ∞, and the threshold has converged, we

have t(n + 1) = t(n) = t∗. The steady state threshold t∗

can be calculated by equating the second term on the right
hand side of Equation (4) to zero. After simple calculations

we get, excluding the case that ∆(1)µ(n) = 0, t∗ = (θ1 +
θ0)/2 = t. Hence at steady state the decision threshold
will converge to its optimal value. In addition, it can be
shown that the threshold always moves in the direction
of the optimal value during learning, which guarantees its
convergence to the optimal value4.

3.2. Error Analysis

In this section we derive expressions for the expectations
of the smoothed error E[e(x, µ(n))], and the true error.
In addition, we discuss some of their properties which will
help us in studying the behavior of the learning. We start
by the expectation of the smoothed error, which can be
written as

E[e(x,µ(n))|µ(n)] = PjE[e(x,µ(n))|µ(n), x ∈ Cj ]

+P1−jE[e(x,µ(n))|µ(n), x ∈ C1−j ]

(5)

Evaluating the expectations on the right hand side of Equa-
tion (5), using assumptions similar to the previous subsec-

tion, and denoting e(n) = E[e(x,µ(n))], we arrive at [6]

e(n) = 0.5

2
4Φ

0
@ dj(θj , µ(n))σq

∆(j)µ(n)
2

+ σ2

1
A

+ Φ

0
@d1−j(θ1−j , µ(n))σq

∆(j)µ(n)
2

+ σ2

1
A
3
5 (6)

A similar expression can be obtained for expected value of
the true error (eT (x)) as

eT (n) = 0.5

"
Φ

 
dj(θj , µ(n))σ

|∆(j)µ(n)|

!
+ Φ

 
d1−j(θ1−j , µ(n))σ

|∆(j)µ(n)|

!#

(7)
In Section 2 we assumed that θ1 > θ0, further assuming
that µ1(n) > µ0(n) is preserved during the learning, the
error expression in Equation (7) can be simplified to

eT (n) = 0.5

"
Φ

 
t(n) − θ1

σ

!
+ Φ

 
θ0 − t(n)

σ

!#
(8)

4This is because the difference between the initial and opti-
mal values is finite and every step is in the right direction.
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This is similar to the Bayes error (eB)[2], except for re-

placing t by t(n), and will converge to eB when t(n) → t.
Hence as the decision threshold evolves towards its opti-
mal value, as discussed in the previous section, the true
error will decrease until it converges to its minimum value,
the Bayes error. Next, examining Equations (6) and (7),
it can be shown that under some reasonable conditions we
have e(n) ≥ eT (n) with equality when |∆(j)µ(n)|/σ → ∞.
The latter upper bound property of the smoothed and true
error developed in this section together with the transient
analysis of the previous section suggest that the learning al-

gorithm will continue to increase |∆(j)µ(n)|/σ to reach the
true error which is a lower bound of the smoothed error ob-
jective function. Noting that |∆(j)µ(n)|/σ is proportional
to the class mean distance. The increase of this ratio will
thus cause the means to drift (continue to move apart) even
after convergence to the optimal classifier. In the next sub-
section we will outline the relationship between this mean
drift and the increase of variance of the classifier.

3.3. Variance Analysis

This subsection will relate the mean drift property dis-
cussed in the previous subsection to the increase of the
variance of the classifier5, and hence the reduction of its
generalization capability, or over-training. This behavior,
which contributes to the increase of test set error, is often
observed when running excessive iterations of MCE/GPD
or other discriminative learning methods. Hence the devel-
oped expression can be used to monitor variance increase
and may help in overcoming this negative effect. By writ-
ing an expression for the decision threshold and using tech-
niques similar to the previous subsections for the calcula-
tion of its variance, we arrive at the following expression
for the variance of the decision threshold[6]

var[t(n + 1)|µ(n)] = −(t(n + 1) − t(n))2 +

ε2

8
√

2πσ

 
∆(j)µ(n)

σ

!2

×

1p
2∆(j)µ(n)2 + σ2

×
2
4φ

0
@ √

2dj(θj , µ(n))σq
2∆(j)µ(n)

2
+ σ2

1
A

+ φ

0
@√

2d1−j(θ1−j , µ(n))σq
2∆(j)µ(n)

2
+ σ2

1
A
3
5 (9)

At convergence t(n + 1) = t(n), and hence the first term
in Equation (9) will vanish leaving the second term which
increases with the mean drift.

4. EXPERIMENTS: SPEECH RECOGNITION

BASED ON HMMS

We have performed extensive simulation with Gaussian
data, and in all experiments the predicted theoretical be-
havior perfectly match the simulation result [6]. In this sec-
tion we will study the performance of MCE/GPD training
of HMMs for an English E-set alphabet recognition task.

5Decision threshold in our case.

Motivated by the similarity of the Gaussian classifier up-
date equation (Equation (2)) to MCE/GPD learning of
the means of Gaussian mixture HMMs [5], we may expect
that the obtained theoretical results will carry over to the
HMM case. Thus, we empirically study the behavior of
MCE/GPD iterations for Gaussian mixture HMMs to ver-
ify the suggested learning pattern. That is, the training set
error (true error), and MCE objective function (smoothed
error) will decrease, with the smoothed error being an up-
per bound of the true error. After the true error rate satu-
rates the MCE objective function will continue to decrease
causing only the “distance” between models to increase,
and possibly hurting generalization (test set error). De-
tails of the experimental setup used to verify this pattern
are given below.

The experiments are performed on the English E-set
vocabulary of ISOLET database, consisting of {B, C, D,
E, G, P, T, V, Z}. ISOLET is a database of letters of the
English alphabet spoken in isolation. The database con-
sists of 7800 spoken letters, two productions of each letter
by 150 speakers, 75 male and 75 female. The recordings
were done under quiet, laboratory conditions with a noise-
canceling microphone. The data were sampled at 16 kHz
with 16-bit quantization. ISOLET is divided into five parts
named ISOLET 1-5. In this experiment, only the first pro-
duction of each letter in ISOLET 1-4 is used as training
data. All data in ISOLET 5 is used as testing data. The
feature vector is of 39 dimensions, which include 12-d static
MFCC, log-energy, delta and acceleration coefficients.

An HMM recognizer with 16-state, 1-mixture per state
whole-word based models is trained by HTK to be the ini-
tial models for MCE training. The recognizer achieves an
accuracy of 93.4% for the total 26 letters and an accuracy
of 85.56% for the E-set letters of the test data set.

In our MCE/GDP, discriminant function is normal-
ized by the utterance length and feature dimension. Both
means and variance will be updated for each training sam-
ple. The step size used in this experiment is ε = 3. The
weight η in the misclassification function is set to 4. The
scale γ in sigmoid function is set to 2 and the shift θ is
set to 0[5]. For the E-set test, the recognition rate for the
training data set is improved from 93.89% to 99.91% (only
one misclassification left), while the recognition rate for
the testing data set is improved from 85.56% to 91.67%.
In Figure 1 we plot the results for both the training and
the testing sets as a function of the number of iterations
in the MCE training procedure. Each iteration includes
updates over all the training samples.

In Figure 1, “Train” stands for the recognition rate of
the training data set. “Test” stands for the recognition rate
of the testing data set. “Smoothed Rate” stands for the
smoothed recognition rate of the training data set. These
three curves use the y-axis on the left side. “Euclidean”
stands for the summation of Euclidean distances between
each pair of models [7]. “KL” stands for the summation
of Kullback-Leibler distances between each pair of models
[7, 8]. These two curves use y-axis on the right side. Note
that recognition rate is used, in the figure, instead of error
for convenience, hence, for example, the “Smoothed Rate”
shows as a lower bound to the “Train”.

The curve “Train” shows that the true error converges
after about 25 iterations. After the convergence of the
true recognition rate, the smoothed recognition rate for the
training data set (curve “Smoothed Rate”) continues to in-

I - 107

➡ ➡



Figure 1: The MCE/GPD learning curves in HMM-based
speech recognition.

crease towards the true recognition rate. This agrees with
what was shown in the Gaussian case that the smoothed
error objective function is an upper bound of the true er-
ror on training data. In addition, the recognition rate for
testing data (curve “Test”) has no apparent improvement
(even drops down a little) after the true error converges,
which suggests that over-training starts to occur. This
agrees pretty well with the pattern suggested at the begin-
ning of this section. Also another important observation is
that the distances between models continues to increase (in
Euclidean and KL sense) even after the true error rate con-
verges. This indicates the “mean drift”, here better called
“model drift”, found in the theoretical analysis. This drift
is expected to contribute to the increase of the variance of
the classifier and hence reducing its generalization ability,
though this is not theoretically proved for the HMM case.

A few comments regarding our experimental setup are
worth mentioning here. Due to our desire of keeping a prac-
tical, yet simple, speech recognition scenario, we deviated
from our theoretical framework in some aspects. First, a
multiple class recognition problem was considered. It was
shown in [9] how to formalize an MCE objective function
using pairwise mis-classification measures, and this work
can be considered as a starting point to generalize our anal-
ysis to the general multiple class problem. In this work to
handle this generalization we used the averaged pairwise
model distance in place of the normalized inter-class mean

distance |∆(j)µ(n)|/σ of Section 3. Second, we also chose
to update both means and variances while the analysis con-
sidered only mean estimation for fixed variance. The anal-
ysis of mean estimation for changing variance is a trivial
extension to that of this paper by conditioning on the vari-
ance, while analysis of variance recursion is more difficult
and was not addressed here.

5. SUMMARY

This paper first considers the analysis of learning the class
means using the MCE/GPD framework for a two-class
Gaussian classifier. It was shown that the algorithm con-
verges to the Bayes solution and that after convergence
the normalized inter-class mean distance increases (“mean
drift”), this drift was related to the increase of the clas-
sifier variance, and hence the reduction of its generaliza-
tion capability or over-training. One interesting implica-
tion is that over-training, which is not directly measur-
able, is now related to an inter-class distance which can be
monitored during learning. The similarity of the consid-
ered learning algorithm to MCE/GPD updates of Gaus-
sian mixture HMMs motivated us to empirically study the
behavior of these updates, and they turned out to agree
pretty well with the pattern suggested for the Gaussian
classifier, where it was found that the averaged pairwise
model distance continues to increase after the training er-
ror converges in a multi-class E-set recognition problem.
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