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ABSTRACT

In this paper, we propose a new discriminative training method for
estimating CDHMM (continuous density hidden Markov model)
in speech recognition, based on the principle of maximizing the
minimum relative multi-class separation margin. We show that the
new training criterion can be formulated as a standard constrained
minimax optimization problem. Then we show that the optimiza-
tion problem can be solved by a GPD (generalized probabilistic
descent) algorithm. Experimental results on E-set and Alphabet
tasks (ISOLET database) showed that the new training criterion
can achieve significant (up to 21%) error rate reduction over the
popular MCE (minimum classification error) training method.

1. INTRODUCTION

Discriminative training has been extensively studied over the past
decade and been proved quite effective to improve ASR perfor-
mance over the traditional maximum likelihood (ML) method for
HMM-based speech recognition systems. Two most popular dis-
criminative training methods are minimum classification error (MCE)
training [5, 2] and maximum mutual information (MMI) training
[8, 9]. Despite of their significant progresses, many issues related
to discriminative training remain unsolved. One issue reported
by many researchers (see [9, 3] and others) is that all discrimi-
native training methods for HMM-based speech recognition suffer
the problem of poor generalization capability. In other words, the
discriminative training can significantly improve HMMs and leads
to a dramatic error reduction on training data but such a significant
performance gain can hardly be maintained or generalized in any
unseen testing set. Usually only a marginal gain can be achieved
over the ML method in a new data set even after discriminative
training method is carefully handcrafted for the testing set, espe-
cially in large-scale tasks.

To address this problem, we proposed in [4] to estimate HMMs
discriminatively based on a new criterion, which is called max-
imum multi-calss separation margin or large margin estimation
(LME). Based on the theoretical results in machine learning, a
large margin classifier implies a good generalization power and
generally yields much lower generalization errors in new test data
as shown in support vector machine and boosting method.

In [1], the authors proposed the so-called Hidden Markov Sup-
port Vector machines (HMSVM) for label sequence learning prob-
lem. In HMSVM, discrete HMMs (DHMMs) are estimated based
on the large margin principle. However, in speech recognition,
continuous density HMMs (CDHMM) using Gaussian mixture dis-
tributions is the most popular model for speech signals. In this

paper, we extend the theoretical study in [4] and propose a modi-
fied criterion, namely large relative margin estimation (LRME), to
remedy a deficiency in the original criterion in [4]. The remain-
ing of this paper is organized as follows. First, in section 2 we
will briefly introduce our original large margin training criterion
and then present the modified criterion. Next, in section 3 We will
give our solution for estimating large margin CDHMM parameters
based on the new criterion using a GPD algorithm [6]. Experimen-
tal results will be presented in section 4. Finally a summary will
be given in section 5.

2. LARGE RELATIVE MARGIN HMM

In ASR, given any speech utterance X, a speech recognizer will
choose the word Ŵ 1 as output based on the MAP decision rule as
follows:

Ŵ = arg max
W

p(W |X) = arg max
W

p(W ) · p(X|W ) (1)

= arg max
W

p(W ) · p(X|λW ) = arg max
W

F(X|λW )

where λW denotes the HMM representing the word W andF(X|λW )
is called discriminant function. Here we are only interested in
HMM λW and assume p(W ) is fixed.

For a speech utterance Xi, assuming its true word identity as
W T

i , following [1], the multi-class separation margin for XT
i is

similarly defined as:

d(Xi) = F(Xi|λW T
i

) − max
Wj∈Ω Wj �=W T

i

F(Xi|λWj
) (2)

= min
Wj∈Ω Wj �=W T

i

h
F(Xi|λW T

i
) − F(Xi|λWj

)
i

(3)

where Ω denotes the set of all possible words. Obviously, if d(Xi) >
0, Xi will be correctly recognized; if d(Xi) ≤ 0, Xi will be in-
correctly recognized.

Given a set of training data D = {X1, X2, · · · , XN}, and
its transcription L = {W T

1 , W T
2 , · · · , W T

N}, we can calculate the
separation margin (or margin for short) for every utterance in D
based on the definition in eq.(2). Let’s define a subset of training
utterances, S

S = {Xi | Xi ∈ D and 0 ≤ d(Xi) ≤ γ} (4)

where γ > 0 is a pre-set positive number. S is called support vec-
tor set and each utterance in S is called a support token, which has

1Depending on the problem of interest, a word W may be any linguistic
unit, e.g., a phoneme, a syllable, a word, a phrase, a sentence, etc..
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relatively small positive margin among all utterances in training
set D. In other words, all utterances in S are relatively close to
the classification boundaries even though all of them locate in the
right decision regions. To achieve a better generalization power,
it is desirable to adjust decision boundaries, which are implicitly
determined by all models, through optimizing HMM parameters Λ
to make all support tokens as far from the decision boundaries as
possible, which will result in a robust classifier with better general-
ization capability. This idea leads to estimating the HMM models
Λ based on the criterion of maximizing the minimum margin of all
support tokens, which is named as large margin estimation (LME)
of HMM.

Λ̃ = arg max
Λ

min
Xi∈S

d(Xi) (5)

The HMM models, Λ̃, estimated in this way, are called large mar-
gin HMMs. Considering eq.(3), large margin HMMs can be equiv-
alently estimated as follows:

Λ̃ = arg max
Λ

min
Xi∈S, Wj∈Ωj �=i

h
F(Xi|λW T

i
) − F(Xi|λWj

)
i

(6)

= arg min
Λ

max
Xi∈S, Wj∈Ωj �=i

h
F(Xi|λWj

) − F(Xi|λW T
i

)
i

(7)

subject to contraint F(Xi|λW T
i

) − F(Xi|λWj
) > 0 for all Xi ∈

S and Wj ∈ Ω, j �= i.
However, such a constraint does not guarantee the existence

of a minimax point. As an illustration of this, let’s assume a sim-
ple case with only two classes m1 and m2 and there is a support
token X close to the decision boundary. If we pull m1 and m2
together at the same time, we can keep the boundary unchanged
but increase the margin defined in eq.(3) as much as we want. As
models move toward X, the absolute values of both F(X|m1) and
F(X|m2) increase, so does the margin as well, although the rela-
tive position of X related to the boundary actually doesn’t change
at all.

There are a few ways to remedy this deficiency in the original
LME criterion. One solution is proposed in [7]. In this paper, we
propose to change the definition of margin in eq.(2) to be a relative
separation margin, defined as:

d̃(Xi) = min
Wj∈Ω Wj �=W T

i

"
F(Xi|λW T

i
) − F(Xi|λWj

)

F(Xi|λW T
i

)

#
(8)

If the discriminant functions F(·) are defined as in eq.(1), for
all support tokens in the set S , the dynamic range of the relative
margin d̃(Xi) lies in [0, 1]. Since the relative margin is bounded
by definition, the maximum value of relative margin always ex-
ists. However, in many cases, F(Xi|λ) is defined as the log-
likelihood of Xi given model set Λ, so we have F(Xi|λW T

i
) < 0

and F(Xi|λWj
) < 0 . To make the relative margin a positive

value, we slightly modify its definition as:

d̃(Xi) = min
Wj∈Ω Wj �=W T

i

"
F(Xi|λWj

) − F(Xi|λW T
i

)

F(Xi|λW T
i

)

#
(9)

Thus, as F(Xi|λWj
) < F(Xi|λW T

i
) for correctly recognized

tokens in the set S , we always have d(Xi) > 0. Similarly we
define the support vector set as eq.(4). Therefore, our new training
criterion is defined as

Λ̂ = arg min
Λ

max
Xi∈S, Wj∈Ω,Wj �=W T

i

h
1 −

F(Xi|λWj
)

F(Xi|λW T
i

)

i
(10)

subject to constraints

F(Xi|λW T
i

) − F(Xi|λWj
) > 0

for all Xi ∈ S and Wj ∈ Ω, j �= i. It is called large relative
margin estimation (LRME) of HMMs. To solve the above min-
imax optimization problem, we will derive an iterative approach
for CDHMM based on the GPD algorithm.

An intuitive explanation of the large margin estimation (LME)
or large relative margin estimation (LRME) can be illustrated by
a simple HMM-based classifier for 2-class problem, as shown in
Figure 1. By modifying the HMM parameters, we change the clas-
sification boundary to make it as far from all training samples as
possible. In this way, margin of the classifier will be increased so
that its generalization power is improved accordingly.

Fig. 1. Illustation of a Large Margin or Large Relative Margin
classifier

3. LARGE RELATIVE MARGIN ESTIMATION OF
CDHMM USING GPD ALGORITHM

To use GPD algorithm for the large margin optimization in eq.(6),
we need to construct a differentiable objective function. We use
summation of exponential functions to approximate the maximiza-
tion in eq.(10) as follows:

max
Xi∈S, Wj∈Ω, Wj �=W T

i

h
1 −

F(Xi|λWj
)

F(Xi|λW T
i

)

i

≈ log

( X
Xi∈S, Wj∈Ω, Wj �=W T

i

exp
h
ηd(Xi, λWj

, λW T
i

i)1/η

(11)

d(Xi, λWj
, λW T

i
) = dij = 1 −

F(Xi|λWj
)

F(Xi|λW T
i

)

where η > 1. As η → ∞, the continuous function in the right
hand side of eq.(11) will approach the maximization in the left
hand side.
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Therefore, we define the objective function as:

Q(Λ) =
1

η
log

( X
Xi∈S, Wj∈Ω, Wj �=W T

i

exp(ηdij)

)
(12)

=
1

η
log

( X
Xi∈S

X
Wj∈Ω,Wj �=W T

i

exp(ηdij)

)
(13)

=
1

η
log Q1 (14)

Now, we can use GPD algorithm to adjust Λ to minimize the objec-
tive function Q(Λ). To maintain HMM model constraints during
the optimization process, we need to define the same transforma-
tions for model parameters as used in [5]. Then it can be shown
that the iterative adjustment of Gaussian means follows

µ̃m
skl(n + 1) = µ̃m

skl(n) − ε
∂Q(Λ)

∂µ̃m
skl

˛̨̨
˛̨
Λ=Λn

(15)

µm
skl(n + 1) = σm

skl µ̃m
skl(n + 1) (16)

where µm
skl(n + 1) is the l-th dimension of Gaussian mean vector

for the k-th mixture component of state s of HMM model m at
n + 1 iteration.

∂Q(Λ)

∂Q1

=
1

η

1

Q1

(17)

∂Q1

∂µ̃m
skl

=
X

Xi∈S

( X
Wj∈Ω,Wj �=W T

i

η exp(ηdij)
∂dij

∂µ̃m
skl

)

=
X

Xi∈S

(h
δ(W T

i − m)
1

F2(Xi|λm)

∂F(Xi|λm)

∂µ̃m
sklX

Wj∈Ω,Wj �=m

ηF(Xi|λWj
) exp(ηdij)

i
−

(1−δ(W T
i −m))

1

F(Xi|λW T
i

)
η exp(ηdij)

∂F(Xi|λm)

∂µ̃m
skl

)
(18)

where M is the total number of hmm models in Λ. W T
i = m if

the true model for utterance Xi is the m-th model in the model set
Λ. As

F(Xi|λm) = log L(Xi, λm) ≈ log L(Xi, q; λm)

=
TX

t=1

h
log am

qt−1qt
+ log bm

qt
(xt)

i
+ log πm

q0 (19)

bm
j (xt) =

KX
k=1

cm
jkN

ˆ
xt; µ

m
jk, Rm

jk

˜
(20)

so,

∂F(Xi|λm)

∂µ̃skl
=

TX
t=1

δ(qt − s)
∂ log bm

s (xt)

∂µ̃skl
(21)

where

∂ log bm
s (xt)

∂µ̃m
skl

= cm
sk(2π)−

D
2

‚‚Rm
sk

‚‚− 1

2 (bm
s (xt))

−1

„
xtl − µm

skl

σm
skl

«
exp

(
−

1

2

DX
l=1

„
xtl − µm

skl

σskl

«
2
)

(22)

D is the dimension of feature vectors. Rm
sk is the covariance matrix

for state s and Gaussian mixture component k for hmm model m.
Here we assume it is diagonal. q is the best state sequence obtained
by aligning Xi using hmm model λm.

Combining equations from (17) to (22), we can easily obtain
∂Q(Λ)/∂µ̃m

skl for eq.(15). Similar derivations for the variances,
mixture weights and transition probabilities can be easily accom-
plished. However, we only updated mean vectors in the work re-
ported in this paper.

4. EXPERIMENTAL RESULTS

The LRME algorithm was tested on two isolated-word tasks. The
first one is E-set (B, C, D, E, G, P, T, V, Z), the second one is alpha-
bet (letters A-Z) set. The OGI-ISOLET database was used. The
ML (maximum likelihood) baseline was built using HTK toolkit.
The ISOLET set 1-4 first production of each speaker was used as
the training set. There are 1080 utterances for E-set and 3120 ut-
terances for alphabet set, respectively. Both productions of every
speaker in ISOLET set 5 were used as the testing set. There are
540 utterances for E-set and 1560 for alphabet set in the testing
data. The data sampling rate is 16K Hz. Acoustic feature vec-
tors are of standard 39 dimensions including 12 MFCC, the nor-
malized energy, and their first and second order time derivatives.
Each letter was represented by a whole-word HMM model with
16 states. Different number of Gaussian mixture components are
experimented. The MCE model training uses the best ML model
as the seed model. The LRME model training uses one of the best
MCE models as the seed model. The tables 1 and 2 give a perfor-
mance comparison of the best results obtained by different training
criteria.

Table 1. Results (word accuracy %) of different training criteria
on E-set test data.

1-mixture 2-mixture 4-mixture
ML 85.56 90.56 91.48

MCE 91.48 94.07 94.44
LRME 93.52 95.00 95.19

Table 2. Results (word accuracy %) of different training criteria
on Alphabet test data.

1-mixture 2-mixture 4-mixture
ML 93.14 94.94 95.38

MCE 95.58 95.96 96.09
LRME 95.64 96.60 96.92

It is clearly demonstrated that LRME achieved the best re-
sults on both tasks. On E-set, LRME-trained model obtained the
word accuracy of 95.19%, which is 13% less error than the best
MCE-trained model with an accuracy of 94.44%. On Alphabet
set, LRME achieved a 96.92% word accuracy, which is 21% less
error than the best MCE model with an accuracy of 96.09%.

Figure 2 plots the recognition accuracy, approximate margin
, i.e., −Q(Λ), whereQ(Λ) is given in eq.(12)), and true margin
on the test data, i.e., d(Xi) in eq.(9), as a function of the number
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Fig. 2. Curves for LRME training of a 4-mixture model on E-set
task. Top figure is word accuracy of LRME model on testing set
(flat line is the best MCE accuracy level for comparison). The
middle figure is the curve of approximate margin which was being
maximized during LRME-training. The bottom one is the curve of
corresponding true margins.

of iterations of the LRME training procedure. As the seed model
(obtained from previous MCE training) already reaches 100% ac-
curacy on the training set and the LRME training process keeps
the accuracy unchanged, so it was not plot in the figure. We can
see from the curves that with the number of iterations going up, the
approximate margin keeps increasing, which is consistent with the
goal of GPD optimization. Meanwhile the recognition accuracy on
the testing set keeps increasing (or unchanged for a short period).
After 40 iterations, the LRME model reaches the accuracy level
of the best MCE model on the testing set. After 90 iterations, the
LRME training achieves 95.19% accuracy on the testing set, repre-
senting a 13% reduction in recognition error. Also we can see that
the true margin keeps increasing accordingly and it is greater than
the approximate margin. It can be proved that the approximate
margin is a lower bound of the true margin. Our study shows that
the larger η, the approximate margin get closer to the true margin.
But a too large η may make the LRME estimation very sensitive
to an outlier training sample. In our experiments, we choose η as
10.

Similar to MCE estimation, there are a few parameters (ε in
eq.(15), η in eq.(12), γ in eq.(4)) that affect the convergence of
LRME/GPD estimation. A detailed study of their effects will be

given in another paper due to lack of space.
Another issue is that the current LRME training uses only sup-

port tokens, which are a subset of correctly recognized tokens. In
case there is any recognition error in the training set, a different
algorithm, which is similar to MCE formulation, was proposed in
[4] to handle the set of error tokens. However, in the work reported
here, there is no recognition error in the training set, so we are not
concerned about it.

5. SUMMARY

In this paper, we have proposed a new training method, large rela-
tive margin estimation(LRME), for continuous density HMM based
speech recognition. The LRME approach aims at improving the
poor generalization capability of existing discriminative training
methods. Motivated by large margin classifier in machine learn-
ing, the new training criterion is trying to maximize the minimum
multi-class relative separation margin. The formulation of GPD-
based LRME is given. We investigated its performance on two
speaker-independent isolated-word tasks. The LRME method pro-
vides up to 21% reduction in error rate, compared to the MCE
method. Further research and experiments on continuous speech
and sub-word based system are in progress.
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