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ABSTRACT

Missing data methods attempt to improve robust speech recog-
nition by distinguishing between reliable and unreliable data in
the time-frequency domain. Such methods require a binary mask
which labels time-frequency regions of a noisy speech signal as
reliable if they contain more speech energy than noise energy and
unreliable otherwise. Current methods for estimating the mask are
based mainly on bottom-up speech separation cues such as har-
monicity and produce labeling errors that cause a degradation in
recognition performance. We propose a two stage recognition sys-
tem in order to improve mask estimation and produce better recog-
nition results. First, an n-best lattice consistent with the speech
separation mask is generated. The lattice is then re-scored by ex-
panding the mask using a model-based hypothesis test to deter-
mine the reliability of individual time-frequency regions. System-
atic evaluations show significant improvement in recognition per-
formance compared to that using speech separation.

1. INTRODUCTION

The performance of automatic speech recognizers (ASRs) degrade
rapidly in the presence of noise and other distortions [1]. To mit-
igate the effect of noise on recognition, noisy speech is typically
preprocessed by speech enhancement algorithms, such as spectral
subtraction based systems (e.g. [2]). If samples of the corrupting
noise source are available a priori, a model for the noise can addi-
tionally be trained and noisy speech may be jointly decoded based
on the models of speech and noise [3]. However, in many realistic
applications, the performance of the above approaches to robust
speech recognition is inadequate [4].

Recently a missing data approach to robust speech recognition
has been proposed [4]. This method distinguishes between reliable
and unreliable data in the spectral or time-frequency (T-F) domain.
When speech is contaminated by additive noise, some T-F regions
will contain predominantly speech energy (reliable) and the rest
are dominated by noise energy. The missing data method treats
the latter T-F units as missing or unreliable during recognition (see
Section 2.1). The performance of the missing data recognizer is
significantly better than the performance of a system using spec-
tral subtraction for speech enhancement followed by recognition
of enhanced speech [4].

The missing data recognizer requires a binary T-F mask that
provides information about which T-F regions, of the noisy speech

signal, are reliable and which are unreliable. Previous studies have
shown that the missing data recognizer performs exceedingly well
when this mask is known a priori [4, 5]. Attempts to estimate
such a binary mask through front-end preprocessing using speech
separation techniques have been only partly successful. Spectral
subtraction is frequently used to generate such binary masks in
missing data studies [4, 6]. Noise is assumed to be long-term sta-
tionary and its spectrum estimated from frames that do not contain
speech (silent frames containing background noise). The noise
spectrum is then used to estimate the signal to noise ratio (SNR)
in each T-F unit. If the SNR in a T-F unit exceeds a threshold, it
is labeled reliable; it is labeled unreliable otherwise. In the pres-
ence of non-stationary interference sources, however, the use of
spectral subtraction results in a poor estimate of the mask. Meth-
ods that primarily utilize the harmonicity of voiced speech have
also been proposed to estimate the mask for missing data appli-
cations [7, 8, 9]. Hence, they are unable to effectively deal with
unvoiced speech. Additionally, accurate estimation of pitch is dif-
ficult, if not impossible, when SNR is low. Under these conditions,
estimation of the binary mask corresponding to voiced speech may
not be reliable too. Thus, the estimation of the binary T-F mask re-
mains a challenging problem.

On the other hand, the human auditory system exhibits a re-
markable ability to segregate a target speech source from various
interference. According to Bregman [10], this is accomplished via
a process termed auditory scene analysis (ASA). ASA involves
two types of organization, primitive and schema-driven. Primitive
ASA is based on bottom-up cues such as pitch, and spatial loca-
tion of a sound source. Schema-based ASA is based on top-down
use of stored knowledge about auditory inputs, e.g. speech pat-
terns, to supplement primitive analysis. We therefore believe that
a top-down approach, using speech models, could be used to refine
the mask generated by bottom-up front-end processing to achieve
improved recognition results.

In this paper, we present a two-pass missing data recognition
system that estimates the binary T-F mask and produces recogni-
tion results in the mean time. In the first pass, a mask produced
by a speech separation system is used to generate an n-best lattice
using a missing data recognizer. This represents bottom-up pro-
cessing. This lattice is then re-scored, to produce the final recog-
nition results, by augmenting the initial mask using the informa-
tion contained in the states along individual paths. Specifically,
we propose a state-based hypothesis test to determine the reliabil-
ity of each T-F unit. This corresponds to top-down analysis. The
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resulting recognition performance is substantially better than that
of the conventional ASR and also significantly better that that of
the missing data recognizer using the mask produced by speech
separation alone.

The rest of the paper is organized as follows. The next section
contains a detailed presentation of the model. The proposed sys-
tem has been systematically evaluated on a noisy connected digit
recognition task and the evaluation results are presented in Sec-
tion 3. Finally, conclusions and future work are given in Section 4.

2. SYSTEM DESCRIPTION

The proposed system is a two-pass recognition system. In the first
pass, we use a mask generated through front-end processing as
input to a missing data recognizer to generate an n-best lattice. In
the second pass, we use a state-based hypothesis test to enhance
the mask and produce recognition results at the same time.

2.1. Bottom-up Speech Separation

The input to the system is a mixture of speech and interference,
sampled at 20 kHz. Following the original study of Cooke et
al. [4], we use an auditory filterbank decomposition of the input
signal to generate the feature vectors for recognition. Specifically,
the input is first analyzed using a 128 channel gammatone filter-
bank whose center frequencies are quasi-logarithmically spaced
from 80 Hz to 5 kHz. The instantaneous Hilbert envelope at the
output of each gammatone filter is smoothed using a first-order fil-
ter with 8 ms time constant. The smoothed envelope is then sam-
pled at a frame rate of 10 ms and log compressed. As a result, the
input signal is decomposed into a group of T-F units.

The missing data recognizer [4] makes use of spectro-temporal
redundancy in speech to recognize a noisy signal based on its
speech dominant T-F units. Given an observed speech vector Y ,
the problem of word recognition is to maximize the posterior
P (ωi|Y ), where ωi is a valid word sequence according to the
grammar for the recognition task. When parts of Y are masked
by noise or other distortions, Y can be partitioned into its reli-
able and unreliable constituents as Yr and Yu. In the marginaliza-
tion method, the posterior probability using only the reliable con-
stituents is computed by integrating over the unreliable ones [4].
If Y represents spectral energy and sound sources are additive, the
unreliable parts can be constrained as 0 ≤ Yu ≤ Y . This bounded
marginalization method is shown in [4] to have a better recognition
score than the simple marginalization method, and is hence used
in all our experiments.

A fundamental requirement of the missing data recognizer is
therefore a binary mask that informs it whether a T-F unit is reli-
able (1) or unreliable (0). This mask is usually generated through
front-end processing such as those based on spectral subtraction
and harmonicitiy of voiced speech. As stated previously, while the
accuracy of the mask produced by such bottom-up speech sepa-
ration methods is good in limited situations, it may contain large
errors under realistic conditions. Our experiments with the miss-
ing data recognizer have shown that wrongly labeling unreliable
T-F units as reliable, especially, is harmful for recognition. Hence,
in the first pass, we use a “conservative” binary T-F mask as in-
put to the missing data recognizer. The conservative mask may
be obtained, for example, using spectral subtraction by increasing
the SNR threshold above which each T-F unit is labeled 1. This
mask is needed to ensure that the first pass retains a small set of

viable recognition candidates for subsequent top-down analysis.
This will not only reduce the search space during the second pass,
but also ensures the less likely recognition candidates are not in-
volved in subsequent mask determination. The output of the sys-
tem in this stage is a lattice from which an n-best hypothesis list
can be generated.

2.2. Top-down Hypothesis Testing

In the second stage, we seek to augment the bottom-up mask by
the top-down use of speech models. Specifically, we use those
states of the hidden Markov model (HMM) speech recognizer that
are contained in the n-best lattice.

The use of a conservative criterion during bottom-up mask
generation ensures that the probability of each reliable T-F unit
being dominated by speech is high. Hence, during top-down pro-
cessing we only analyze those T-F units labeled 0 by the first stage.
As, the number of unreliable T-F units under low SNR conditions
is very high, a state-based analysis of each unreliable T-F unit is
computationally prohibitive. Therefore, we only analyze those T-
F units which have a high probability of being labeled 1. For this
purpose, we use spectral subtraction. The spectrum of noise is es-
timated as the average spectrum of the first 10 frames of the noisy
speech spectrum [4]. The noise spectrum is then used to estimate
the local SNR in each T-F unit. Then each T-F unit labeled 0 by
bottom-up speech separation is now be labeled using a threshold δ
as

label =

{
2 if SNRlocal ≥ δ
0 otherwise

(1)

The choice of δ represents a trade-off between increasing the com-
putation time of top-down analysis and possibly reducing the num-
ber of speech dominant T-F units. The optimal value of δ is depen-
dent on SNR [11]. For simplicity we set δ to be a constant and use
the value of δ = 0 dB as suggested in [5]. Not all T-F units labeled
2 correspond to speech due to the limitations of spectral subtrac-
tion stated previously. Therefore, top-down processing is needed
to remove noise dominant T-F units from among those labeled 2.

Note that those T-F units labeled 1 by bottom-up processing
are not affected by spectral subtraction based labeling. Therefore,
we now have a three-way mask. The lattice generated by the first
pass is now re-scored using the missing data recognizer and the
three way mask. During re-scoring, each active state indepen-
dently analyzes the T-F units labeled 2. The observation density
of each state in a HMM based ASR, which is usually modeled as a
mixture of gaussians with diagonal covariance, models a particular
class of speech signal. This information could therefore be used to
verify whether the observed value in a T-F unit is consistent with
a speech state. This corresponds to top-down processing. It has
been suggested that the observed value may be used to generate
“evidence” and “counter-evidence” measures for speech in a par-
ticular state [5]. In this paper, we use the two measures to construct
a hypothesis test for each T-F unit labeled 2 as follows: If a T-F
unit satisfies the inequality in (2), we label it as 1; it is labeled 0
otherwise.

p(yi|k, q)

p(yi)
>

∫ yi

0

p(xi|k, q)
1

α
dx, (2)

where

α =

∫ yi

0

p(xi)dx (3)

is the normalization factor. yi and xi are respectively the observed
spectral energy and speech spectral energy seen during training in
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a frequency channel i. p(yi|k, q) is the likelihood of observing yi

given state q and mixture k. The prior p(xi), used to normalize the
probabilities in (2) is modeled empirically using a mixture of gaus-
sians based on the data used in training of the ASR. The LHS of (2)
therefore models the evidence for speech in state q. The RHS pro-
vides the probability that the observed value is speech corrupted
with additive noise, or counter-evidence for speech. As stated pre-
viously, since yi represents spectral energy, under additive noise
conditions, the range for the true speech value is [0 . . . yi]. In the
absence of any knowledge about the noise level, equation 2 rep-
resents a conservative decision. This is consistent with our ob-
servation regarding the wrong labeling of unreliable T-F units as
1. Recall that the top-down mask refinement is simultaneous with
lattice re-scoring.

Thus, we first use bottom-up cues to generate a conservative
mask and subsequently refine this mask using top-down process-
ing. Barker et al. [5] have also proposed a top-down approach
using a speech recognizer to identify the T-F units that correspond
to speech signal in a noisy mixture. The primarily difference in our
approach is in the use of bottom-up cues in our initial mask gener-
ation. This mask drastically helps reduces the search space for top-
down analysis. Additionally, the prior distribution in their proba-
bilistic framework is modeled as an uniform distribution which is
suspected to cause a bias toward labeling the T-F units as unreli-
able [5].

3. EXPERIMENTAL RESULTS

We have evaluated the system on a speaker-independent recogni-
tion of connected digits. This task is used in [4, 5]. Thirteen (1-9,
silence, short pause between words, zero and oh) word-level mod-
els are trained. All except the short pause model have 10 states,
whose output distribution is modeled as a mixture of 10 Gaus-
sians [4]. The short pause model has only three states. The TIDig-
its database’s male speaker data [12] is used for both training and
testing. Specifically, the models are trained using 4235 utterances
in the training set of this database. Testing is performed on a sub-
set of the testing set consisting of 232 utterances from 3 speakers
different from the speakers in the training set. The speech prior is
modeled empirically using a mixture of 230 gaussians using all the
utterances in the training data. A HMM toolkit, HTK [13] is used
for training. During testing, the decoder is modified to incorporate
our mask-generation and missing data recognition. To test the ro-
bustness of the two-pass recognizer system on the aforementioned
task, noise is added at a range of SNRs from -5 dB to 10 dB in steps
of 5 dB. The noise source is factory noise from the NOISEX cor-
pus [14], which is also used in [4]. Factory noise is chosen as it has
energy in the formant regions, therefore posing challenging prob-
lems during recognition. It is also impulsive, making it difficult to
estimate its spectrum using spectral subtraction methods [4].

Monaural CASA systems that compute an ideal binary mask
have been used as front-ends for the missing-data recognizer previ-
ously [8]. A T-F unit in the ideal binary mask is labeled 1 if the cor-
responding T-F unit of noisy speech contains more speech energy
than interference energy; it is labeled 0 otherwise. This mask may
be obtained a priori , from premixing speech and noise. While sev-
eral systems estimate this mask well in low-frequencies, they per-
form poorly in high-frequencies (for an exception, see [15]). Ad-
ditionally, under noisy and reverberant conditions, high-frequency
components of speech are more corrupted than low-frequency ones.
Hence, to reveal the potential for our top-down processing stage,

Table 1. Digit recognition accuracy (%) of the proposed sytem
and the missing data recognizer using the initial mask

System
SNR (dB)

-5 0 5 10
Initial Mask 18.9 67.4 72.8 71.9

Integrated Mask 18.5 74.9 79.6 85.8
IBM 72.4 85.7 92.7 96.2

we set high-frequency components (above 1 kHz) of the ideal-
binary mask to 0 and use it as our bottom-up, speech separation
(initial) mask for the first pass. Here we use 2 best tokens in each
state to generate the n-best lattice. Our experiments indicate that
using 2 tokens in each state is sufficient to mostly retain the true
hypothesis while maintaining a reasonable compuational cost. The
top-down processing stage will be used to identify reliable regions
above 1 kHz. Table 1 summarizes the performance of the proposed
system when using the ideal binary mask below 1 kHz (“Integrated
Mask”). Performance is measured in terms of word-level recogni-
tion accuracy at various SNRs. For comparison, we also show
the performance of the missing data recognizer when using the
ideal binary mask at all frequencies (“IBM”), which represents the
ceiling performance for the proposed approach. Additionally, the
performance of the missing data recognizer when using the initial
mask is also shown (“Initial Mask”).

At SNRs > −5 dB, the proposed system shows significant
performance improvement over the missing-data recognizer when
using the ideal binary mask below 1 kHz. This indicates that the
top-down hypothesis testing stage of our system is able to correctly
identify the reliable T-F units in the high frequency region. A slight
degradation in performance is observed at −5 dB. This may due
to the poor quality of the n-best list generated during the first pass
with the missing data recognizer. Our results also confirm previ-
ous findings that show that missing data techniques achieve high
accuracy of recognition when the ideal binary mask is available.

We now present results using a monaural CASA system that
is able to handle both high and low frequencies of speech [15].
This system is a voiced speech separation system based on two
main stages: 1) segmentation and 2) grouping. In segmentation,
the input signal is decomposed into a collection of contiguous T-F
units that are dominated by one sound source. During grouping,
those segments that are likely to belong to the same source are
grouped together. In the low-frequency range, the system gen-
erates segments based on temporal continuity and cross-channel
correlation, and groups them based on periodicity similarity. For
high-frequencies, the signal envelope fluctuates at the pitch rate
and amplitude modulation rates are used for grouping [15]. Pro-
vided a target pitch contour can be estimated, this segregation
mechanism produces a binary mask which selects T-F units where
speech dominates the interference. The system shows a robust per-
formance when tested with a variety of noise intrusions. Hence, we
use the system to generate our initial mask. For input to the system
in [15], a pitch estimate is derived from Praat [16].

Fig. 1 summarizes the performance of the proposed system
when using the mask generated by the system in [15] as the initial
mask for the first pass. Across all SNR conditions, the proposed
system shows significant improvement over the performance of the
missing data recognizer with the initial mask. For e.g, at 10 dB, a
reduction in word-error-rate (WER) of 47% is obtained. Note at
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Fig. 1. Performance of the proposed system and the missing data
recognizer using the mask produced by the speech separation sys-
tem in [15]. Integrated Mask refers to the performance of the
proposed system. IBM and Speech Separation Mask refer to the
performance of the missing-data recognizer using the ideal binary
mask and mask from [15] respectively. For comparison, the perfor-
mance of the conventional ASR without the use of any front-end
processing is also shown.

SNRs > 0 dB, the performance of the proposed system is close
to that of the missing data recognizer when using the ideal binary
mask. Also note that the performance of both the proposed system
and the missing data recognizer is substantially better than that of
a conventional MFCC based ASR with no preprocessing.

4. CONCLUSION

The missing data recognizer shows excellent performance when
the ideal binary is accurately estimated. Mask estimated by speech
separation systems may contain large errors even under moder-
ate amounts of additive noise. In this paper, we have presented
a two-pass missing data recognition system that refines the mask
generated through front-end processing and provides significant
reduction in the WER compared to that of the missing data rec-
ognizer when using the speech separation mask. It is known that
lattice re-scoring can be an order of magnitude faster than normal
recognition [13]. So due to the small size of the lattice generated
in our first pass, only a small increase in the computation time is
observed for our system over that of the missing data recognizer.

A significant advantage of our system is that a noise model
is not required. Hence, it is applicable under various noise con-
ditions. In our experiments we have used the ideal binary mask
below 1 kHz and a mask derived from a CASA system as bottom-
up speech separation masks. However, masks produced by other
speech separation methods could also be used for the same. In
using a fixed threshold with spectral subtraction to generate can-
didate T-F units during the second pass, the system is unable to
produce adequate T-F units labeled 2 at very low SNRs. This may
be the cause for the relatively small decrease in WER obtained
under these conditions. Future work will address this issue and
attempt to improve the performance at very low SNRs.
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