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ABSTRACT 

Generalized posterior probability (GPP) is investigated in 
this paper as a statistical confidence measure for verifying 
recognized sentences of a large vocabulary continuous 
speech recognition system (LVCSR). We optimize the 
GPP by training the exponential weights of the acoustic 
and language models and decision threshold to minimize 
total verification errors. Two utterance level confidence 
measures: generalized utterance posterior probability 
(GUPP) and product of generalized word posterior 
probabilities (GWPP) of component words in a string 
hypothesis are tested. When evaluated on the Chinese 
Basic Travel Expression Corpus (BTEC), 47.9% and 
53.9% relative improvement of utterance confidence error 
rate (CER) have been obtained for the GUPP and product 
of GWPPs confidence measures, respectively. 

1. INTRODUCTION 

Current state-of-the-art speech recognition technology is 
not robust to changes such as noise, channel mismatch, 
speaker variability, etc. Verifying recognition output of an 
LVCSR is then necessary. By assessing the confidence of 
speech recognition results, appropriate actions can then be 
taken. This will improve the overall performance, 
subjectively and objectively, of a spoken language system 
(e.g., a spoken dialogue system or an automatic speech 
translation system). 

Confidence measures are useful for improving 
performance of spoken language systems by assessing 
reliability of recognition output. For instance, a spoken 
dialogue system only needs to confirm recognized words 
of low confidence. Recognized words of high confidence 
are accepted without further confirmation to avoid 
unnecessary dialogue turns. Another application is 
automatic speech translation. Confidence measures can be 
used to weight recognized words, as well as utterances, to 
facilitate appropriate translations. 

There have been various approaches proposed for 
measuring confidence of speech recognition output. They 
can be roughly classified into three categories: i) feature 
based; ii) explicit model based; and iii) posterior 

probability based. Feature based approaches [1] try to 
assess the confidence according to selected features (e.g., 
word duration, part-of-speech, acoustic and language 
model back-off, word graph density, etc.) using some 
trained classifiers. Explicit model based approaches 
employ a candidate class model with competing models [2] 
(e.g., an anti-model or a filler model) and a likelihood ratio 
test is applied. The posterior probability based approach 
tries to estimate the posterior probabilities of a recognized 
entity (e.g., a word) given all acoustic observations [3, 4]. 

In this study we generalize the posterior probability 
approach to word and utterance levels. Verification 
experiments were performed on the Chinese Basic Travel 
Expression Corpus (BTEC) [5]. Since every sentence is 
contained in a recorded utterance in our corpus, 
verification of recognized sentences is then performed 
using the utterance level posterior probability and product 
of word level posterior probabilities.  

2. UTTERANCE VERIFICATION USING 
GENERALIZED POSTERIOR PROBABILITIES 

Generalized posterior probability (GPP) is a probabilistic 
confidence measure for verifying optimally the recognized 
entities at different levels, e.g., subword, word and 
utterance [6]. It was first applied to verification at the word 
level under various conditions [4, 7, 8]. 

In continuous speech recognition, the word posterior 
probability (WPP) can be computed by summing the 
posterior probabilities of all string hypotheses in the search 
space bearing the focused word, w, starting at time s and 
ending at time t, given as  
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where a word hypothesis is defined by the corresponding 
triple, [w; s, t]; p(xs

t|wm) is the acoustic likelihood;  
p(wm|w1

M), the language model likelihood;  xs
t, the 

sequence of acoustic observations; M, the no. of words in a 
string hypothesis; p(x1

T), the probability of the acoustic 
observations; T, the length of the complete acoustic 
observations. WPP can be computed for each recognized 
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word, without using any additional models (e.g., anti-
models) from a word graph or N-best list generated during 
the decoding process. 

Generalized word posterior probability (GWPP) is a 
generalization of WPP to take into account of three issues 
in computing WPP: 
a) Reduced search space: Search space in recognition is 

almost always pruned to make the search tractable. A 
reduced search space (e.g., word graph or N-best list) 
is used when computing GWPP, including the acoustic 
observation probability, p(x1

T). 
b) Relaxed time registration: A word is defined as a triple 

by the word identity, its starting and ending time. The 
starting and ending time of a word is affected by 
various factors like the pruning threshold, model 
resolution, noise, etc. It is therefore desirable to relax 
the time registrations for deciding whether the same 
word reappears in a different string hypothesis. In 
GWPP, words in the search space with the same 
identity and overlapping in time are considered as 
reappearances. 

c) Reweighted acoustic and language model likelihoods: 
In continuous speech recognition, assumptions are 
made to facilitate efficient parametric modeling and 
decoding process. Incompatibilities also exist among 
components in the models. They include: 
• Difference in dynamic range: In Gaussian mixture 

models, acoustic likelihoods obtained from pdf have 
an unbounded dynamic range. Language model 
likelihoods, based on the statistical n-grams, however, 
lie between 0 and 1. 

• Difference in frequency of computation: Acoustic 
likelihoods are computed every frame, while 
language model likelihoods are computed once per 
word. 

• Independence assumption: Neighbouring acoustic 
observations are assumed to be statistically 
independent in computing the acoustic likelihoods. 

• Reduced search space: The full search space is 
always pruned to a word graph (or an N-best list). 

The acoustic and language models weights are labeled 
as α and β, respectively. When reweighting the acoustic 
and language model likelihoods, these weights are jointly 
trained to optimize word verification performance. The 
corresponding GWPP is:  
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GWPP has been demonstrated to achieve robust word 
verification performance at different search beam 
widths [7], signal-to-noise ratios [8], etc. These are clear 
evidences to show the appropriateness and effectiveness of 
this confidence measure in verifying recognized words. 

2.1. Generalized Utterance Posterior Probability 

For utterance verification, a generalized utterance posterior 
probability (GUPP) is defined similarly. Deciding whether 
the utterance is correctly recognized does not require a 
sharp focus on the specific misrecognized word 
components when compared to word verification. It only 
measures the statistical confidence of the whole 
hypothesized utterance. 

Definition of the GUPP is similar to that of its word 
counterpart (GWPP), where the reduced search space, 
reweighted acoustic and language model likelihoods are 
similarly applied. However, the time registration relaxation 
of beginning and ending of a utterance is no longer 
necessary since all string hypotheses share the same 
utterance boundaries. As a result, the GUPP is defined as 

∑
∀

⋅
⋅=
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where pa is the acoustic model score and pl, the language 
model score of the hypothesized utterance; α and β,  the 
acoustic and language model weights, respectively. The 
resultant GUPP is between 0 and 1 where a value close to 
1 implies higher confidence on the correctness of an 
utterance. 

Although application of the language model scaling 
factor is commonly used in LVCSR, optimal language 
model scaling can only change the ranking of hypotheses. 
In order to optimally reject incorrectly recognized 
utterances, both acoustic and language model weights are 
jointly trained to minimize rejection errors. 

2.2. Product of GWPPs 

A new way to measure the confidence of a recognized 
utterance is based on the joint confidence of all component 
words in the recognized string. GWPP of a word is a 
measure of its correctness, or a probability of a binomial 
distributed “word correct” event. The probability of an 
“utterance correct” event is then the product of all 
probabilities of component “word correct” events, 
assuming that all word events are statistically independent. 
The product of GWPPs of all recognized words in a 
recognized utterance is therefore proposed as a utterance 
level confidence as given below 

∏
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where M is the total number of words in the string 
hypothesis. 

3. EXPERIMENTAL SETUP 

3.1. Speech recognition 

The LVCSR used in this study is the ATR speech 
recognition system [9], running in multi-pass with a word 
bigram language model and a 16k word lexicon. The 
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feature parameters included 12 MFCC, 12 ∆MFCC and 
∆power. Word graphs were generated and then rescored 
using a word trigram language model to obtain the final 
recognition output. The word recognition accuracy is 91%. 

3.2. Corpus 

The speech corpus used for evaluation was a large 
vocabulary, continuous, read Chinese speech database in 
the Chinese Basic Travel Expression Corpus (BTEC) [5]. 
It was compiled and collected for a travel domain speech-
to-speech translation project. We used two subsets of 
utterances as the development and test sets. Both speakers 
and utterances in these sets are mutually exclusive. We 
summarize the information in Table 1. 

 Development Test 
# speakers 4 M + 4 F 16 M + 16 F 

# utterances 841 3,437 
# words 4,030 16,781 

# characters 6,327 25,939 
Table 1. Summary of the development and test sets selected 
from the Chinese BTEC corpus and used in our experiments. 

3.3. Verification 

Generalized posterior probabilities at word and utterance 
levels were computed separately and corresponding 
optimal values for the acoustic and language model 
weights (α, β) and rejection thresholds were determined 
from the development set by a full grid search of the total 
error surface. Other efficient search algorithms (e.g., 
steepest descent, Downhill Simplex search) for parameter 
optimization have also been proposed in [7]. These 
optimized parameters thus trained in the development set 
were then used in the test set. 

3.4. Evaluation Measure 

Evaluation of verification performance was based on a 
normalized total verification errors ⎯ confidence error 
rate (CER) [3]. Total errors include false acceptance (FA) 
of incorrectly recognized units and false rejection (FR) of 
correctly recognized units. This sum is then normalized by 
the number of recognized units in the LVCSR output.

%100
unitsrecognized#

rejectionfalse#acceptancefalse#
CER ×+=

CER is 1 when all correctly recognized units are 
rejected and all incorrectly recognized units (insertions and 
substitutions) are accepted. A CER of 0 means that all 
units are correctly verified. 

In our experiments, a baseline was also used for 
performance comparison. It was obtained by accepting all 
recognition output without any rejection. 

4. RESULTS AND DISCUSSIONS 

The total verification error contours at various acoustic 
and language model weights are shown in Figure 1 and 2 

for word and utterance, respectively. The coarse scale 
plots show the contours of total errors over the full range 
of parameters. Fine scale contours of lower error regions 
are shown in a smaller range. 

Figure 1. Total error surfaces (test set) for word verification 
using GWPP. The coarse scale plot shows equal error 
contours at different αααα and ββββ values. Optimal parameters are 
determined using the fine scale plot. 

Figure 1 shows the total error contours when word 
verification is carried out using the GWPP. In general, 
better verification performance (darker region) is found 
near the lower left corner. As mentioned in [4, 7], when 
larger values of α and β are used, more emphasis is put on 
higher ranked hypotheses. The smaller α and β are, the 
more hypotheses are taken into account. Therefore, small 
values of α and β imply more hypotheses are taken into 
consideration when computing the GPP making it more 
reliable. In the extreme case, when both α and β are set to 
zero, all hypotheses in the reduced search space are taken 
into account equally by simply counting reappearances of 
the focused word. 

Figure 2. Contour plots of total errors (test set) for utterance 
verification using the generalized utterance posterior 
probability. 

The total error contours for utterance level verification 
are depicted in Figure 2. It is observed that the number of 
errors is very large along the y-axis where the language 
model weight is zero. Similar phenomenon is observed 
when the acoustic model weight is zero, or along the x-axis. 
These imply that neither the acoustic nor the language 
model score can be ignored when assessing the confidence 
of a recognized utterance using GUPP. The best 
verification performance is obtained when α=0.16 and 
β=1.8.  Contrary to the case of word verification using 
GWPP, the number of verification errors at the origin, 
(0, 0), is very large. This is because recognized utterances 
do not reappear in the search space (i.e., single occurrence). 
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As a result, verification by just counting the reappearance 
is not reliable at the utterance level. 

Figure 3. Total errors (test set) for utterance verification by 
using the product of GWPPs from component words. 

When the product of GWPPs of component words is 
used as the confidence measure for utterance verification, 
the total verification error contours are shown in Figure 3. 
It is observed that for verification at utterance level using 
product of GWPPs, the error contours are more similar to 
that of GWPP-based word verification (c.f. Figure 1). The 
optimal region lies close to the origin, where both α and β
are small. The best verification performance is obtained 
when α=0.07 and β=0.7, where small values of α and β
are preferred as explained before. 
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Figure 4. Verification performance in CER at word and 
utterance levels. Utterance verification using GUPP and 
product of GWPPs are shown together. 

Figure 4 shows the word and utterance level 
verification performance using the GPP approach. It is 
observed that at the utterance level, absolute value of the 
CER is higher. This is because utterance recognition 
accuracy is lower than word accuracy, hence a higher 
baseline CER. By applying verification using GPP, relative 
improvement in CER at utterance level using GUPP is 
higher (47.9%) than that of word level using GWPP 
(27.5%). Furthermore, using product of GWPPs of 
component words in utterance verification can further 
reduce the already low CER. Comparing with the baseline, 
a 53.9% relative improvement in CER is obtained. More 
importantly, results shown in Figure 4 confirm that 
parameters (α, β and threshold) determined from the 
development set achieve a verification performance very 
close to the optimal performance, which is the upper 
bound obtained from closed test set tuning. 

The performance improvement achieved by the GUPP 
over the baseline hinges on the fact that by proper 

weighting of the acoustic and language model likelihoods 
of the utterance hypotheses, utterance verification errors 
can be reduced. Furthermore, by considering the 
reappearances of component words with relaxed time 
registrations in the product of GWPPs, further 
improvement in utterance verification performance is 
achieved. Product of GWPPs of all component words also 
conforms well to the notion that an utterance is correct 
when all of its component words are correct. 

5. SUMMARY 

Optimal verification of recognition output at word and 
utterance levels is investigated by using the generalized 
posterior probability. Using the product of GWPPs of 
component words as a new confidence measure further 
enhances verification at utterance level. Experimental 
results showed consistent verification performance 
improvement when parameters obtained from the 
development set are used in the test set for evaluation. 
Relative improvement of verification performance 
obtained at utterance levels using GUPP is 47.9%. When 
the product of component GWPPs of all words in a string 
hypothesis is used, relative improvement in utterance 
verification performance is further increased to 53.9% 
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