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ABSTRACT

A major problem with speech recognition interfaces is the
detection and correct rejection of words that lie outside of
the command vocabulary. Given the limited resources pro-
vided to an interface, any method that is used to detect out-
of-vocabulary (OOV) words should ideally require mini-
mal computational resources. A new utterance verifier is
proposed which detects OOV words efficiently using con-
fidence measures calculated for additional words in the N-
Best list. This approach can be used with any existing con-
fidence measure. We implement this utterance verifier with
three different confidence measures and obtain a 3-16% im-
provement over their standard implementation.

1. INTRODUCTION

Speech recognition interfaces allow hands free operation of
electronic devices. Many current and potential applications
for such systems are consumer electronics, and accessibility
aids for the elderly or disabled. However, the performance
of a speech recognition interface can degrade significantly
with presence of out-of-vocabulary (OOV) words. Efficient,
accurate detection and rejection of these words is therefore
required for robust interpretation of these words.

Present techniques for dealing with this problem can be
loosely grouped into the categories (A) confidence measures
and (B) utterance verification. Confidence measures (CM)
assign a single confidence value to an utterance based on
some heuristic or probabilistic algorithm. In isolated recog-
nition systems only acoustic confidence measures can be
created since there is typically no language information to
exploit. By far the most common way of approaching this
problem is by estimating the normalization probability from
the Bayesian probability equation. Numerous approaches
have attempted to approximate this probability using filler
models[1], garbage models[2], on-line garbage models[3]
and pseudo-filler models[4]. Additionally, heuristic confi-
dence measures have been created using decoding statistics,
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or likelihood scores among other features[5].
The second approach, utterance verification, attempts to

model the OOV utterance directly. Models for in-vocabulary
(IV) and OOV words are used in a likelihood ratio test to
optimally separate the two classes[6].

When only a small vocabulary is required, such as in
a command interface, it is appropriate to use whole word
models in the recognition system to save complexity and
computation costs. As a result many filler models and utter-
ance verification techniques are not applicable. In this work
we construct an utterance verifier for whole word model
systems using a new approach. We explore the use of CMs
calculated from other less likely words in the N-Best list.
Traditionally, a CM is calculated for only the top entry in
the N-Best list. The extra CMs used in our approach can
be calculated with very little additional cost since the de-
coded scores for the models have already been evaluated in
the recognition stage. Present techniques have made use of
scores from other HMMs to form a single CM for the top
utterance [7]. However, to our knowledge no one has calcu-
lated CMs for these other words and explored their efficacy
in an utterance verifier.

In the next section we outline the small vocabulary word
recognizer used in this work. Following that, we present a
new confidence measure in addition to two standard CMs
that will be used in the proposed utterance verifier. We then
develop the generalized utterance verifier that incorporates
CMs from any number of words in the N-Best list. We then
present the performance of the proposed verifier and com-
pare it to the traditional single CM approach.

2. SPEECH RECOGNITION INTERFACE

An isolated speech recognizer was implemented using word-
based HMMs based on the first 13 coefficients of an MFCC
representation. Eight state HMMs were used as they pro-
vided an appropriate trade-off between recognition rate and
computational complexity.

We used the TI-46 Word speech corpus for training and
testing of the speech recognizer and utterance verifier. Specif-
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ically, the TI-20 vocabulary subset was used, which con-
tains 26 utterances of 20 words from 8 females and 8 males.
The 20 words are all short command-like utterances simi-
lar to what might be used in a command control interface.
Speaker independent models were trained using 5 utterances
of each word from each individual. 16 utterances of each
word from each individual were used for testing. Using the
eight state models described above the speech recognizer
achieved a recognition rate of 99.9% when tested on the
same closed set of speakers. This recognition rate is com-
parable to existing small vocabulary recognition systems.

3. PROPOSED UTTERANCE VERIFIER

3.1. Confidence Measures

In this paper we make use of three confidence measures.
The first confidence measure is our own proposed normal-
ization procedure. This measure is obtained by dividing the
top log-likelihood score (L1) by the sum of the top N log-
likelihood scores plus a filler or garbage model (LGB). We
refer to this CM here as the N-Best measure.

CMNBest =
L1∑V +1

i=1 Li

(1)

The garbage model was implemented similar to the one de-
veloped by Tsiporkova et al. [2] The garbage model is a
two-state ergodic HMM. One state is used to model the av-
erage acoustic speech signal and the second state models the
inter-word, start and end silences. The garbage model was
trained with 2 of each word from all 16 speakers for a total
of 640 utterances.

The second CM used is a standard approach based on
the garbage model. It is produced by dividing the likelihood
by the garbage model score. In terms of log-likelihoods this
becomes.

CMGB = L1 − LGB (2)

Finally, we implement a pseudo-filler model similar to the
ones proposed in as a secondary baseline measure. The
pseudo-filler model is the average of the top N hypotheses
scores. This average is then subtracted from the top model
log-likelihood score as was done earlier[5][4].

CMNAV G = L1 −
∑N

i=1 Li

N
(3)

Traditional OOV detection strategies involve calculat-
ing a single CM for only the top recognized model. This
CM is then compared to a predetermined threshold. A sin-
gle threshold can be set for all OOV words but traditionally
word-dependant thresholds are used. In our standard single
CM implementation word-dependent thresholds were ob-
tained using a minimum classification error metric in train-
ing.

As was already mentioned, our own approach involves
calculating the CMs for not only the top word but for all
words included in the N-Best list. Therefore the CM Equa-
tions 1-3 which currently calculate the top CM are extended
to calculate CMs for the remaining N words in the N-Best
list. This is done by replacing L1 by Lj where Lj is the log-
likelihood score from the jth word in the N-Best list. For
example Equation 1 becomes the following.

CMNBest(j) =
Lj∑V +1

i=1 Li

(4)

These CMs form a vector R which contains N CMs from
the N words in the N-Best list.

R = {CM1, CM2, ..., CMN} (5)

We interpret the CM calculated for the top model as a mea-
sure of how well the utterance matches the model. We can
interpret the other CMs from less likely words as measures
of how well the utterance matches these other words. It is
possible that the similarities or dissimilarities between the
utterance and other words could provide discriminant infor-
mation to aid the IV and OOV detection.

3.2. Utterance Verifier

Since we have more than a single CM a simple threshold
can not be used. Therefore, the utterance verifier was con-
structed by considering the optimal separation between IV
and OOV utterances based on the vector R. We define the
conditional distribution for both IV and OOV classes as fol-
lows:

P (R|Hi) = P (R = {CM1, CM2, ..., CMN}|Hi) (6)

where H0 is the outcome that the utterance is IV and H1 the
outcome that the utterance is OOV. These distributions are
N dimensional where N is the number of CMs calculated
from the N-Best list. Depending on how many entries we
keep in the N-best list, the number of CMs we calculate can
be varied to include only the first CM, as in the traditional
approach, to all IV models. The nature of the distributions
will vary depending on which CM is chosen. However it has
been observed that for the CMs outlined above the distribu-
tions tend to be unimodal and relatively symmetric. It would
seem reasonable to adopt a multivariate Gaussian approxi-
mation for the distribution given its simplicity and ability to
capture at least the first and second moments. Therefore we
approximate the distributions by multivariate Gaussians in
the utterance verifier.

In order to separate the decision space optimally we
want to minimize the Bayes risk associated with assigning
utterances to each of the possible outcomes. In the binary
case, we have four possible outcomes. The two outcomes
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associated with correct detection of both IV and OOV utter-
ances should not be penalized and so we only need to min-
imize the risk for the outcomes that produce errors. This
occurs when the utterance is mislabelled (i.e. IV as OOV
and vice versa). The risk equation is therefore:

� = POOV ξFA

∫
z0

p(R|H1)dR

+ PIV ξM

∫
z1

p(R|H0)dR (7)

where ξM is the cost associated with a miss and ξFA is the
cost associated with a false alarm. POOV is the a priori
probability that the utterance will be OOV and PIV is the
a priori probability that the utterance will be IV. The total
decision space z is divided between z0 and z1. How this
space is divided determines the performance of the system.
Classical Bayesian detection theory optimally separates the
two regions and results in the following likelihood ratio.

Λ′ =
p(R|H0)
p(R|H1)

H0

≷
H1

POOV ξFA

PIV ξM
= τ (8)

The conditional probabilities of the IV and OOV distribu-
tions are approximated by multivariate Gaussians and can
be substituted into the likelihood ratio. The OOV distribu-
tion is modelled as a single Gaussian with a mean of mOOV

and a covariance COOV . The IV distribution is modelled
as a Gaussian mixture, with a component for each IV word,
and the mixture weights are equated to PW . This yields the
following detector which functions as our utterance verifier.

Λ
H0

≷
H1

POOV ξFA

PIV PwξM
= τ (9)

where

Λ =
V∑

i=1

|C−1
i COOV |1/2exp[−1/2[Di − DOOV ]] (10)

and D is the Mahalanobis distance defined by

D = (RT − m)C−1(R − m) (11)

4. RESULTS

In the following experiments we partitioned the test data
from the TI-20 corpus into two halves. All of the data was
processed by the isolated word recognizer and the corre-
sponding likelihoods scores used to calculated the vector of
confidence measures R. The first half of the CMs were used
to estimate the IV and OOV distributions. The second half
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Fig. 1. ROC curves for proposed utterance verifier on a
fixed vocabulary of six words
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Fig. 2. Average minimum error rates for single CM ap-
proach and the proposed utterance verifier approach

of CMs were used to evaluate the utterance verifier perfor-
mance.

Initially the utterance verifier was evaluated for a fixed
vocabulary of 6 words. The N-Best CM was used and eval-
uated for the top model. Additionally the number of extra
CMs were varied between 0-5 as is shown in Figure 1. This
plot shows the ROC curves for the proposed utterance ver-
ifier using the N-Best CM with the number of extra CMs
varied between 0-5. We can see that as the number of extra
CMs is increased the performance of the verifier improves.
From a single CM to all 6 available CMs we find a 5% re-
duction in the minimum error rate. This is not unexpected
given that the additional information contributed by the ex-
tra CMs cannot impair the detection performance – a result
that is easily proved mathematically.
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4.1. Vocabulary Variation

In order to accurately assess the validity of the proposed
technique with a small vocabulary set the following steps
were taken. The number of IV words was varied between
6 and 10 to examine the effect of vocabulary size. Addi-
tionally 20 different randomly selected vocabulary combi-
nations were tested to eliminate effects of a specific vocabu-
lary combination. For these experiments the minimum error
operating point was used as a measure of the performance.
The minimum error operating point is found by equating the
cost terms Equation 9. Using the same CM the standard im-
plementation is compared to the utterance verification im-
plementation where the maximum number of extra CMs are
included. Figure 2 displays the minimum error rate of the
two approaches for vocabulary sizes between 6 and 10. The
error rate displayed is the average error rate for the 20 ran-
domized vocabulary configuration. We can see in this figure
that the new utterance verifier outperforms the single CM
approach by around 16% over the various vocabulary sizes
tested.

Similar results were obtained with the garbage model
and pseudo-filler model CMs. Figure 3 shows the results
obtained using the utterance verifier with the garbage model
CMs and the standard garbage model CM. We see that the
minimum error rate is reduced by around 3%. Figure 3 also
shows similar results when the utterance verifier is imple-
mented with the pseudo-filler CM. In this case the improve-
ment in minimum error rate is around 18%. We can also see
that both utterance verifiers outperformed the single CM ap-
proaches.

One of the assumptions of the Bayesian approach is that
all the probabilities are known a priori. We have of course
used a Gaussian approximation and so we should not ex-
pect the verifier to operate at the true optimal point. The de-
viation from optimality was investigated by comparing the
experimentally obtained minimum error operating point to
the apex of the ROC curves. On average these two error
rates were found to differ by less than 0.5% when the N-
Best CM is used. Therefore the Gaussian approximation
does not significantly alter the optimal separation between
the IV and OOV classes.

5. CONCLUSION

A new utterance verifier was proposed and explored to im-
prove the detection of OOVs. The extra CMs used in this
technique require very little added computational cost. Three
types of CMs were used in this verifier including a new N-
Best measure, a garbage model and a pseudo-filler model.
The new verifier resulted in a 16, 3, and 18% improvement,
respectively, over the standard single CM implementation.
Future work on this method will include investigating the
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Fig. 3. Average minimum error rates of single CM approach
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combination of different types of CMs and its use for veri-
fication in joint speech-speaker interfaces.
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