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ABSTRACT

Bayesian combining of confidence measures is proposed for speech
recognition. Bayesian combining is achieved by the estimation
of joint pdf of confidence feature vector in correct and incorrect
hypothesis classes. If the joint pdf in the two classes are cor-
rectly estimated, this method guarantees an optimal combining in
the minimum Bayes risk sense. Investigating the distribution of
confidence features, we found out that the pdfs are well estimated
by Gaussian mixture model with full covariance matrix in com-
bining small number of features. In addition, the adaptation of a
confidence score by adapting the joint pdf is presented. The pro-
posed methods reduced the classification error rate by 17% from
the conventional single feature based confidence scoring method
in isolated word Out-of-Vocabulary rejection test.

1. INTRODUCTION

In speech recognition, confidence measures (CMs) are used to
evaluate the reliability of recognition results. ASR systems suf-
fer severe performance degradation in real application due to envi-
ronmental mismatch, noise, spontaneous speech and other factors.
The capability of measuring the degree of confidence of hypothe-
sized words enables ASR systems to detect unreliable or misrecog-
nized results and control these erroneous outputs more actively. In
most cases, the estimation of CM is followed by a decision mak-
ing whether a hypothesized word is correct or incorrect. Thus,
CM estimation is directly related to a binary classification prob-
lem where CM is treated as a feature vector. Previous works can
be categorized into two parts in this perspective. The first approach
is to find good CM features for classification. The good CM fea-
tures should separate the classes of correct and incorrect hypothe-
sis well. These CM features are obtained from acoustic informa-
tion (word level likelihood ratio test [1]) or side information from a
decoding process ( N-best list, word posterior probability [2]). The
second approach is to design a good classifier which uses various
CMs as a feature vector. These works could be called CM combin-
ing. Recent efforts on CM combining include linear discriminant
analysis (LDA) based CM combining [3], support vector machine
(SVM) classifier [4], boosting [5], and others.

In this paper, we propose a Bayesian combining of CM fea-
tures. This approach is concerned about the pdf estimation of the
two classes and finds Bayes optimal decision boundary. Previous
research focused on obtaining good classification results via di-
mensionality reduction (LDA) or maximizing generalization power
(SVM). In general, Bayesian classification does not consider these
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factors for good classification. However, it is expected that the sta-
tistical modeling of CM features provides a solid basis for further
manipulation of CM. As an application of statistical modeling of
CM, we consider speaker adaptation of CM. The well known MAP
adaptation method can be easily applied to statistical modeling of
CM. Detailed descriptions and related experiments can be found
in the subsequent sections.

2. BAYESIAN COMBINING OF CM FEATURES

CM combining can be considered as a type of binary classification
problem in which individual CMs are used as features for making a
decision whether the recognition result is correct or incorrect. The
objective of Bayesian CM combining is to minimize the Bayes risk
associated with such a decision. From the well known Bayesian
classification rule in binary class cases, the following decision rule
can be expressed

p(x1, x2, ..., xN |ω1)

p(x1, x2, ..., xN |ω0)

ω1
≷
ω0

P0(C10 − C00)

P1(C01 − C11)
(1)

where xi is a feature derived from i-th individual CM, Pi is the
prior probability of class ωi, and Cij is the cost associated with
decision making for ωj when ωi is present. If the priori proba-
bilities and the costs are given, we can easily design the optimal
Bayesian CM combining which achieves the minimum Bayes risk
by choosing the threshold value η0. In the case of simple cost
Cij = 1 − δij , the Bayesian CM combining classifier is optimal
in minimum error rate sense. If the cost values are not given ex-
plicitly, determining the ratio of cost values based on relative cost
of each decision error with Cii = 0 can be a good method.

A basic question which could be raised in Bayesian combining
is, “does the combining give performance increase?” The answer
is “yes.” The performance of Bayesian combining of any features
is better than or at least the same with those of a single feature
which can be proved as follows:

Let �Xi = (x1, ..., xi−1, xi) be a given feature vector for CM
combining. Associated optimal decision rule ri can be written as

∫
p(x1, ..., xi, xi+1|ω1)dxi+1∫
p(x1, ..., xi, xi+1|ω0)dxi+1

ω1
≷
ω0

η0 (2)

where a hidden random variable xi+1 is revealed by marginal dis-
tribution property. When the hidden feature xi+1 is added to the
feature vector, associated optimal decision rule ri+1 with extended
feature vector �Xi+1 is

p(x1, ..., xi, xi+1|ω1)

p(x1, ..., xi, xi+1|ω0)

ω1
≷
ω0

η0 (3)
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Fig. 1. Normalized histograms of confidence value in IV and OOV classes. (a) Phonetic filler, (b) 256 Gaussian mixture model, (c)
Sub-word LLR (transformed)

Equation (2) tells us that the decision rule ri is one of the possible
decision rules with feature vector �Xi+1. Thus, with the extended
feature vector, decision rule ri is not better than the optimal deci-
sion rule ri+1. So, the Bayes risk Ri associated with feature vector
�Xi has the following relationship the following relationship

R1 ≥ ... ≥ Ri ≥ Ri+1 ≥ .... (4)

It means that the performance of Bayesian combining of any fea-
tures is better than or at least the same with those of a single
feature, and as more features are added, the performances shows
non-decreasing property. Thus, if we can estimate accurate pdfs,
Bayesian combining guarantees that performance will increase (though
it’s not a strict increase).

In summary, Bayesian CM combining becomes a likelihood
ratio test in which the estimation of joint pdf of feature vector
�XN = (x1, ..., xN−1, xN ) becomes crucial problem. However,
the accurate estimation of pdf’s could be another problem, espe-
cially with limited training data samples or an unknown pdf. Mul-
tivariate Gaussian and Gaussian mixture are considered for the pdf
modeling. Histogram analysis of individual features reveals that
some of the promising features’ distributions are very similar to
Gaussian distribution. Some features using the sigmoid function
for limiting value range may not have the Gaussian distribution
form. However, by applying the inverse transform of the sigmoid
function, the distribution of those features can be made similar to
Gaussian. In such a feature transform, it is easy to show that any
nonsingular feature transform does not change the classification
performance in Bayesian classification.

Although Gaussian distribution seems to be suitable for mod-
eling some features or their transformed form, the others need
more general form of distribution model. CMs obtained from the
on-line garbage method and the word active count method are eas-
ily influenced by the decoding beam width and may have lower or
upper bounded values. Since these CM features are not Gaussian,
Gaussian mixture model was appropriate for estimating their pdfs.
With Gaussian mixture pdf, we could model any form of distrib-
ution theoretically. But, in most cases, it requires lots of mixture
components which easily lead to unreliable parameter estimation.
These are examined in the experimental section.

3. MAP SPEAKER ADAPTATION OF CM

Speaker adaptation is a process of adapting statistical model para-
meters, mainly HMM parameters of acoustic model, to a specific
speaker by using a small amount of speaker dependent speech data.
Bayesian CM combining is based on statistical modeling and pa-
rameter estimation of CM features. Thus, it is easy to apply the
well established various adaptation techniques to the CM adapta-
tion. Effect of adaptation of confidence measures has not been
studied well. However, since most of the CM features are derived
from acoustic and language model scores that could easily vary
according to the speaker, task or environmental change, we think
that the adaptation of CM is also important. Here, we consider the
MAP estimation for speaker adaptive CM estimation. MAP adap-
tation uses speaker independent statistical model for determining
prior model of concerned parameters. MAP adaptation of mean
parameter is expressed as

µ̂ =
N

N + τ
µ̄ +

τ

N + τ
µ0 (5)

where µ̄ is sample mean of adaptation data, µ0 is speaker indepen-
dent mean, N is the number of observation in adaptation data and
τ is a weighting of prior knowledge to adaptation speech. If the
Gaussian mixture is used for statistical model of CM combining,
N is changed to the expected number of occupying jth mixture,
Nj and µ̄ are changed as posterior weighted sample mean of jth
mixture, µ̄j as the follows

Nj =

N0∑

i=1

p(M = j| �Oi) (6)

µ̄j =

∑N0
i=1 p(M = j| �Oi) �Oi
∑N0

i=1 p(M = j| �Oi)
(7)

4. EXPERIMENTS AND DISCUSSIONS

To evaluate the performances of the Bayesian confidence scor-
ing methods, an isolated word Out-of-Vocabulary (OOV) rejec-
tion task was designed. About 120,000 utterances from 6,000 iso-
lated words were used for training Korean isolated word recog-
nition system, based on triphone units. These are recorded in an
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Table 1. CM features used in OOV rejection experiments.
1 Phonetic filler Unigram phonetic network
2 256 GMM Likelihood normalization by 256 mixture of Gaussian
3 Sub-word LLR Word level geometric mean of sub-word LLR
4 256 GMM sub Sub-word LLR with 256 GMM as anti-phone model
5 Sub-word LLR arth Word level arithmetic mean of sub-word LLR
6 On-line garbage Average of likelihood difference between 1st and nth best
7 Active word count Average number of active hypothesized word path

Table 2. Probability of error P (e) of speaker independent (SI) and speaker adaptive (SA) Bayesian combining methods and FLDA
combining with varying the number of CM features at equal prior condition (%). In SA Bayesian combining, 10, 20, and 100 utterances
were used for each speaker adaptation.

Number of Single Gaussian Gaussian mixture FLDA
features SI SA SI SA SI

3 6.5 6.3 6.2 6.1 6.2 6.0 6.0 5.9 6.5
5 7.3 7.1 7.1 7.1 6.5 6.4 6.3 6.1 6.6
7 7.6 7.4 7.4 7.3 7.1 7.0 6.9 6.8 6.6

office environment. Another corpus recorded in a silent environ-
ment using a different microphone was used for the development
and the test data set. It consisted of about 15,000 utterances of
452 isolated words collected from 30 native Korean speakers. Two
hundred words among the 452 words were used for In-Vocabulary
(IV) words and the other 252 words were used for OOV words.
Nine thousand utterances from 20 speakers were used for estimat-
ing the statistical models for Bayesian CM combining test. And
13,000 other utterances from 10 speakers were used for the CM
adaptation and OOV rejection test. Phonetic filler method, word
level Gaussian mixture model (GMM) method and sub-word based
log-likelihood ratio (LLR) are considered as baseline CM features
(Table 1). They show good performances and have relatively low
correlation coefficients with each other.

Fig.1 shows the histograms of these CM features. The CM fea-
tures using phonetic filler model and GMM have distributions that
are similar to the Gaussian in IV and OOV word classes. The sub-
word based LLR feature which uses a sigmoid function for limiting
the value range of sub-word LLR does not have Gaussian distrib-
ution. However, by applying inverse transformation of sigmoid
function to the word level average of sub-word LLR, we can make
sub-word LLR based CM feature have near Gaussian distribution
in both IV and OOV classes. First, for the Bayesian combining
of CMs, multivariate Gaussian model is used for pdf of the com-
bined CM feature vector. Mean vector and full covariance matrix
are estimated using the recognition results with the development
data set. Since the CM features are highly correlated with each
other, using a diagonal covariance matrix is not appropriate. The
parameters of univariate Gaussian models are also estimated for
statistical modeling of the individual CM features. Given the prior
probability of OOV word P (ω0), if we use the simple Bayesian
cost, OOV word classification error rate P (e) of the individual
CMs and the Bayesian CM combiner can be obtained by the equa-
tion P (e) = (1 − P (ω0))(1 − PD) + P (ω0)PF , where PD is
the probability of detecting IV word, and PF is the probability of
falsely detecting OOV word as IV word.

In Fig.2, Bayesian CM combining consistently out performs
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Fig. 2. Probability of error P (e) of individual CM features and
Bayesian combining methods in OOV rejection test

the individual CMs at all prior conditions. Compared with the in-
dividual CMs, Bayesian combining reduces the error by about 10%
from the best individual feature (phonetic filler) at equal prior con-
dition. The performance with Gaussian mixture pdf is also shown
in Fig.2. When 3 Gaussian mixture components are used for pdf
modeling, the error rate is slightly decreased. However, as the
number of mixture Gaussian components is further increased, the
error rate also consistently increase. As seen in the histograms
of the three features, they have smooth and unimodal Gaussian-
like distributions, thus small number of mixture components is
sufficient for the modeling of the pdf. When other features are
added, the error rate increase. In Table 2, we can see that the er-
ror rates of Bayesian combining are increasing as the number of
combined features is increased. This is contrasted with the non-
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Fig. 3. ROC plot of individual CM features and Bayesian combin-
ing methods in OOV rejection test

decreasing property proved in section 2. This is due to the in-
accuracy in pdf estimation. The discrimination power obtained
by adding more features is not larger than the estimation error in-
curred by the wrong assumption of distribution family especially
in single Gaussian combining and by the unreliable estimation of
increased parameters in Gaussian mixture combining. Due to the
full covariance matrices in mixture model, the number of para-
meters to be estimated easily becomes too many for reliable es-
timation. Thus, we should be careful in selecting good CM fea-
tures and the appropriate pdf models for combining not to raise
the estimation problem. Fisher’s LDA (FLDA) shows a similar
performance with Bayesian combining methods in the 3 CM fea-
tures case. Also, when more features are added, its generalization
power seems somewhat better than the Bayesian combining with
Gaussian mixture model. We can see from the ROC plot (Fig.3)
that Bayesian combining achieves about 92% of PD at PF of 5%.

MAP adaptation is performed for mean adaptation. Covari-
ance matrix adaptation did not show significant improvement. From
20 to 100 utterances are used for the adaptation of each speaker
and the amount of IV and OOV adaptation data was the same in
all conditions. Prior weighting constant was set experimentally as
20. This is similar to the value usually used in acoustic adaptation
in ASR systems. The error rates with speaker adapted CM is also
found in Table 3. The speaker adapted Bayesian combining shows
significantly lower error rates. The minimum error rate is obtained
by speaker adapted Bayesian combining of 3 features that reduces
the error by 18% from the best individual CM feature.

5. CONCLUSIONS

In this paper, we proposed the Bayesian method of combining con-
fidence measures (CMs) and its application to speaker adaptation
of CM. If we can estimate the pdf of the CM feature vector with-
out error, the Bayesian CM combining gives a decision rule which
achieves minimum decision error. In the OOV rejection experi-
ments, the Bayesian CM combining showed significant error rate

reduction. However, we should be careful in choosing good CM
features and the appropriate pdf model for combining so as not to
raise the estimation problem. Speaker adaptation of the CM fea-
ture showed significant error rate reduction. Further study on the
influence of acoustic model adaptation to speaker adaptive CM is
desirable in future works.
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